Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
Abstract:
Methods and apparatuses for dynamically budgeting power usage in a data processing system. In one aspect, a data processing system, includes: one or more first components capable of being dynamically throttled to a plurality of different performance level settings; one or more second components; and one or more power usage sensors. The one or more power usage sensors are to determine information on power usage during a first time period of operation of the data processing system. The one or more first components and the one or more second components may include a computing element to determine one of the performance level settings of the one or more first components of the data processing system for a second time period subsequent to the first time period using the information on the power usage during the first time period.
Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
Abstract:
Methods and apparatuses for dynamically budgeting power usage in a data processing system. In one aspect, a data processing system, includes: one or more first components capable of being dynamically throttled to a plurality of different performance level settings; one or more second components; and one or more power usage sensors. The one or more power usage sensors are to determine information on power usage during a first time period of operation of the data processing system. The one or more first components and the one or more second components may include a computing element to determine one of the performance level settings of the one or more first components of the data processing system for a second time period subsequent to the first time period using the information on the power usage during the first time period.
Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
Abstract:
Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).