Abstract:
An electronic device manufacturing system configured to obtain, by a processor, a plurality of datasets associated with a process recipe, wherein each dataset of the plurality of datasets comprises data generated by a plurality of sensors during a corresponding process run performed using the process recipe. The processor is further configured to determine, using the plurality of data sets associated with the process recipe, a correlation value between two or more sensors of the plurality of sensors. Responsive to the correlation value satisfying a threshold criterion, the processor assigns the two or more sensors to a cluster. During a subsequent process run, the processor generates an anomaly score associated with the cluster and indicative of an anomaly associated with at least one step of the subsequent process run.
Abstract:
Implementations disclosed describe a method and a system to perform the method of obtaining a reduced representation of a plurality of sensor statistics representative of data collected by a plurality of sensors associated with a device manufacturing system performing a manufacturing operation. The method further includes generating, using a plurality of outlier detection models, a plurality of outlier scores, each of the plurality of outlier scores generated based on the reduced representation of the plurality of sensor statistics using a respective one of the plurality of outlier detection models. The method further includes processing the plurality of outlier scores using a detector neural network to generate an anomaly score indicative of a likelihood of an anomaly associated with the manufacturing operation.
Abstract:
Described herein are methods and systems for chamber matching in a manufacturing facility. A method may include receiving a first chamber recipe advice for a first chamber and a second chamber recipe advice for a second chamber. The chamber recipe advices describe a set of tunable inputs and a set of outputs for a process. The method may further include adjusting at least one of the set of first chamber input parameters or the set of second chamber input parameters and at least one of the set of first chamber output parameters or the set of second chamber output parameters to substantially match the first and second chamber recipe advices.
Abstract:
Described herein are methods and systems for providing a user interface to indicate health of a tool in a manufacturing facility. A method may include receiving, via a user interface, user selection of fault detection data pertaining to a tool in a manufacturing facility, obtaining health abnormality indicators of the tool using the fault detection data, and presenting the health abnormality indicators of the tool in the user interface.
Abstract:
Described herein are methods, apparatuses, and systems for reducing equipment repair time. In one embodiment, a computer implemented method includes collecting, with a system, data including test substrate data or other metrology data and fault detection data for maintenance recovery of at least one manufacturing tool in a manufacturing facility and determining, with the system, a relationship between tool parameter settings for the at least one manufacturing tool and at least some collected data including the test substrate data. The method further includes utilizing zero or more virtual metrology predictive algorithms and at least some collected data to obtain a metrology prediction and applying multivariate run-to-run (R2R) control modeling to obtain a state estimation including a current operating region of the at least one manufacturing tool based on the test substrate data and obtain at least one tool parameter adjustment for at least one target parameter for the at least one manufacturing tool. Applying multivariate run-to-run (R2R) control modeling to obtain tool parameter adjustments for at least one manufacturing tool occurs after maintenance to reduce maintenance recovery time and to reduce requalification time.
Abstract:
A method includes identifying trace data including a plurality of data points, the trace data being associated with production, via a substrate processing system, of substrates that have property values that meet threshold values. The method further includes determining, based on the trace data, a dynamic acceptable area outside of guardband limits. The method further includes causing, based on the dynamic acceptable area outside of the guardband limits, performance of a corrective action associated with the substrate processing system.
Abstract:
A method includes receiving one or more fingerprint dimensions to be used to generate a fingerprint. The method further includes receiving trace data associated with a manufacturing process. The method further includes applying the one or more fingerprint dimensions to the trace data to generate at least one feature. The method further includes generating the fingerprint based on the at least one feature. The method further includes causing, based on the fingerprint, performance of a corrective action associated with one or more manufacturing processes.
Abstract:
Described herein are methods, apparatuses, and systems for reducing equipment repair time. In one embodiment, a computer implemented method includes collecting test substrate data or other metrology data and fault detection data for maintenance recovery of at least one manufacturing tool in a manufacturing facility and determining a relationship between tool parameter settings for the manufacturing tool and the test substrate data. The method further includes utilizing virtual metrology predictive algorithms and at least some collected data to obtain a metrology prediction and applying multivariate run-to-run (R2R) control modeling to obtain a state estimation including a current operating region of the at least one manufacturing tool. Applying multivariate run-to-run (R2R) control modeling to obtain tool parameter adjustments for at least one manufacturing tool to reduce maintenance recovery time and to reduce requalification time.
Abstract:
Techniques are provided for classifying runs of a recipe within a manufacturing environment. Embodiments monitor a plurality of runs of a recipe to collect runtime data from a plurality of sensors within a manufacturing environment. Qualitative data describing each semiconductor devices produced by the plurality of runs is determined. Embodiments characterize each run into a respective group, based on an analysis of the qualitative data, and generate a data model based on the collected runtime data. A multivariate analysis of additional runtime data collected during at least one subsequent run of the recipe is performed to classify the at least one subsequent run into a first group. Upon classifying the at least one subsequent run, embodiments output for display an interface depicting a ranking sensor types based on the additional runtime data and the description of relative importance of each sensor type for the first group within the data model.
Abstract:
Described herein are methods and systems for providing a user interface to indicate health of a tool in a manufacturing facility. A method may include receiving, via a user interface, user selection of fault detection data pertaining to a tool in a manufacturing facility, obtaining health abnormality indicators of the tool using the fault detection data, and presenting the health abnormality indicators of the tool in the user interface.