Abstract:
According to certain embodiments, a system for detection of anomalous cells, comprises a hyperspectral imaging system; a memory having executable instructions stored thereon; and a processor configured to execute the executable instructions to cause the system to: receive a patient hyperspectral image comprising a pixel spectral signature for each pixel of the received patient hyperspectral image; classify the patient hyperspectral image by a machine learning model trained to classify hyperspectral images based on pixel spectral signatures; and provide an indication that the patient hyperspectral image contains an anomalous cell type, responsive to the classifying.
Abstract:
A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward wafer. The auxiliary magnets may be either permanent magnets or electromagnets.
Abstract:
In one embodiment, an apparatus to identify chemical and spatial properties of nanoparticles in a semiconductor cleaning solution, comprises a broadband light source to provide an excitation beam; a focusing lens in a path of the excitation beam to form a focused excitation beam; a sample cell, the sample cell configured to hold a cleaning solution and one or more insoluble analytes-of-interest therein; a plurality of optical lens in the path of one or more fluorescence signals to focus the one or more fluorescence signals; and an imaging device, wherein the imaging device captures the one or more fluorescence signals to form a plurality of images that contain both spatial data and spectral data about the one or more insoluble analytes-of-interest.
Abstract:
A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward the wafer. The auxiliary magnets may be either permanent magnets or electromagnets.