摘要:
A method for synthesis of biomedical alloys has been developed based on combustion phenomena. This low pressure combustion synthesis (LPCS) technique may be used for production of Co-based and other metal-based alloys, which cover the entire range of orthopaedic implants, including total hip and knee replacements, as well as hone screws, plates, and wires. A unique aspect of the method is that combustion synthesis under low ambient gas pressure allows one to produce pore-free (>99% theoretical density) alloys with high purity and precise chemical and phase compositions.
摘要:
A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include an absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.
摘要:
A method of releasing hydrogen from ammonia borane is disclosed. The method comprises heating an aqueous ammonia borane solution to between about 80-135° C. at between about 14.7 and 200 pounds per square inch absolute (psia) to release hydrogen by hydrothermolysis.
摘要:
A method of generating hydrogen is disclosed. The method comprises preparing a first mixture of a stabilizer and a gelling agent in water to define a resulting solution. The method further comprises mixing the resulting solution with metallic particles and metal borohydride to define a resulting mixture. The method further comprises igniting the resulting mixture to obtain hydrogen.
摘要:
A method for making a metal oxide material and catalyzing the oxidative coupling of methane, including mixing a metal cation-containing oxidizer portion and a reducing fuel portion with water to define an aqueous solution, evaporatively removing water from the aqueous solution to yield a concentrated liquid, burning the concentrated liquid yield an homogeneous metal oxide powder, flowing methane from a first source and oxygen from a second source over the homogeneous metal oxide powder, and catalyzing an oxidative coupling of methane reaction with the homogeneous metal oxide powder. The homogeneous metal oxide powder contains metal oxides selected from the group including LaSrAlO4, LaAlO3, Sr3Al2O6, Na2WO4—Mn/SiO2, and combinations thereof.
摘要:
A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include an absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.
摘要:
A method of releasing hydrogen from ammonia borane is disclosed. The method comprises heating an aqueous ammonia borane solution to between about 80-135° C. at between about 14.7 and 200 pounds per square inch absolute (psia) to release hydrogen by hydrothermolysis.