摘要:
The invention is a robot teaching pendant containing a display device with graphic display capabilities. Display data is displayed on the graphic display and includes the movement of a robot and taught points. This display data is generated by a display data generation unit based on robot programs stored in data storage unit by buffering the data from a robot controller. This display data may also include representative images of the robot tool along with its coordinates in a tool coordinate system and the taught points in a user or world coordinate system. Thus, the action of the robot can be visually recognized with ease, and the robot can be taught easily and accurately.
摘要:
A robot control method capable of eliminating any influence of motion in a preceding path section to assure an accurate path movement with respect to a portion of a path section toward an end point. In a motion statement, a path-assurance section is previously designated in terms of length, time or path-assurance ratio for a moving path �2!.fwdarw.�3!. A path motion plan EFGH for the moving path �2!.fwdarw.�3! is created so that a path section represented by DHGK is the path-assurance section designated in the motion statement, assuming that D represents a terminal point of the motion along the moving path �1!.fwdarw.�2!. Consequently, an influence of motion of the moving path �1!.fwdarw.�2! is not exerted on the motion after a point in time represented by D or K, to assure a movement on the path �2!.fwdarw.�3! in the path-assurance section.
摘要:
While jog feeding, if the robot can be moved safely without interference or collision with others, the data on jog feeding path is accumulated in an external memory device. And a safe region in which the robot can move without interference or collision can make from some accumulated paths in the robot axial space and stored. When start point and end point for the desired path are specified, one path, which links the start point and the end point and is composed of such safe regions, is found. Then the robot positions are taught as positions corresponding to the path.
摘要:
A robot position teaching system and method including a robot controller to control a robot, a visual sensor to measure a three-dimensional position, an image processing device to measure a position by processing and analyzing an image recognized by the visual sensor, and a position teaching unit provided with a grasping portion having a size which can be grasped by a hand of an operator, and an index which can visually be recognized by the visual sensor, and is disposed at a distal end of a rod-type body extending from the grasping portion. The operator turns on a moving switch of the position teaching unit such that the robot controller moves the robot toward a position of the index recognized by a camera. When an approach teaching switch of the position teaching unit is turned on after movement of the robot is stopped, data of a current position of the index recognized by the camera is stored as teaching position data. On the other hand, by turning on an arrival teaching switch, a current position of the robot is stored as the teaching position data.
摘要:
When an operator selects one of many jog modes, including a tool feed mode, robot coordinate system feed mode, user coordinate system feed mode, joint feed mode, etc., a display controller displays a jog feed direction adapted for the selected mode for superposition on a robot image on a monitor screen. If the operator depresses any of jog feed direction selector keys, the jog feed direction corresponding to the depressed key is displayed for discrimination.
摘要:
An operation program modification device for a robot that is made efficient in positional modification of a cluster of taught points in a corner segment and the like. Sequential N taught points A1 through A6 to be grouped are designated, and the operator executes the operation of positional modification of an intermediate taught point A4. A modification vector for modifying A4 into B4 is calculated. Taught points A2, A3 and A5 located in between the taught point A4 and end points A1 and A6 are grouped into first-region taught points A2 and A3 and a second-region taught point A5. The required modification amounts of the taught points A2, A3 and A5 are calculated by prorating the modification vector according to distance (path distance or straight line distance) from the end-point A1 or A6 to be modified into taught points B2, B3 and B5, respectively. The modification vector may be set to correspond to a modified taught point of a user selection. It is possible to perform necessary input from a teaching operation panel instead of utilizing an offline programming system using a personal computer.
摘要:
A manual-mode operating system for a robot provided with an end-effector. The manual-mode operating system includes a display section including a screen for displaying an image of an end-effector; a first input section for an input of coordinate system data on the screen of the display section, displaying the image of the end-effector, the coordinate system data designating a manual-mode coordinate system used for describing an orientation of the end-effector; a coordinate system setting section for setting the manual-mode coordinate system at a spatial position corresponding to an input position on the screen of the display section, based on the coordinate system data input through the first input section; a second input section for an input of orientation data using the manual-mode coordinate system set through the coordinate system setting section, the orientation data instructing the orientation of the end-effector; and an orientation adjusting section for adjusting the orientation of the end-effector, based on the orientation data input through the second input section.
摘要:
A manual-mode operating system for a robot provided with an end-effector. The manual-mode operating system includes a display section including a screen for displaying an image of an end-effector; a first input section for an input of coordinate system data on the screen of the display section, displaying the image of the end-effector, the coordinate system data designating a manual-mode coordinate system used for describing an orientation of the end-effector; a coordinate system setting section for setting the manual-mode coordinate system at a spatial position corresponding to an input position on the screen of the display section, based on the coordinate system data input through the first input section; a second input section for an input of orientation data using the manual-mode coordinate system set through the coordinate system setting section, the orientation data instructing the orientation of the end-effector; and an orientation adjusting section for adjusting the orientation of the end-effector, based on the orientation data input through the second input section.
摘要:
An robot control apparatus with a teaching operation panel capable of making graphic display. The teaching operation panel comprises a processor, a flash memory, a DRAM, a communication port, a touch panel, a graphic controller for controlling a display device, a key control circuit for jog keys. The flash memory stores an operating system having small data size storable in the flash memory and supporting a graphic interface. The processor reads a robot operation program stored in a memory of the robot controller or in an external memory of the teaching operation pane and makes a graphic display on the display device. The graphic display is easily comprehended by an operator and editing and creation of the robot control program is made easy.
摘要:
An operation section 32 of a teaching operation panel 30 connected to a robot controller 10 through a cable 40 has a general operation section 321 provided with a sub-display 323, and a graphic display operation section 322 for a display 31 provided with a touch panel. When a hand in touch with a hand mark 21' of the robot displayed along with a graphic image 20' is moved on the display screen (as indicated by an arrow A; from a position H1 to a position H2), the touched positions are sequentially sensed by the touch panel and converted to three-dimensional position data by using plane position data (which is calculated based on either a line-of-sight in graphic display or a specifically designated direction of a plane and the latest touched position). Thus obtained three-dimensional position data is, on one hand, used for sequentially updating the display of the graphic image 20', and, on the other hand, sent to the robot controller 10 in order to be used for jog-feeding the robot 20 (as indicated by an arrow A'). A mouse 34 may be used instead of the touch panel. The line-of-sight in graphic display may be determined by a sensor for detecting a three-dimensional orientation.