Abstract:
The system and method of using an ultra-short pulse mid and long wave infrared laser. The system is seeded with a 2 μm laser source having a pulse duration in the femtosecond range. The beam is stretched, to increase the pulse duration, and the beam is amplified, to increase an energy level of the laser beam. Both mid wave IR and long wave IR seed beams are first generated, and then amplified via one or more optical parametric chirped-pulse amplification stages. A compressor may be used to compress one or more of the output beams to achieve high peak power and controllable pulse duration in the output beams. The output beams may then be used to create atmospheric or material effects at km range.
Abstract:
Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
Abstract:
A steerable high-power microwave beam array includes an optical sub-system comprising a laser and an optical time delay unit and a parallel set of RF time delay units. The optical system and/or the RF delay subsystem are utilized to precisely delay the pulses from the microwave antenna elements to provide steerable beam forming.
Abstract:
Ultrashort pulsed laser systems are described. In one example, a pulsed laser system includes a source laser configured to emit a pulsed source laser beam, a splitter configured to split the source laser beam into first and second input laser beams, a first amplifier module configured to amplify the first input laser beam using chirped pulse amplification (CPA) and to produce, at a first output port, a first output laser beam in a first spectral range based on soliton self-frequency shift (SSFS) in the first amplifier module, a second amplifier module configured to amplify the second input laser beam using CPA and to produce an intermediate beam based on SSFS in the second amplifier module, and a mid-infrared fiber configured to receive the intermediate beam and to produce, at a second output port, a second output laser beam in a second spectral range based SSFS in the mid-infrared fiber.
Abstract:
A microwave module is described. The microwave module includes a base bracket, a window plate and a lid. The base bracket is configured to contain a photoconductive switch, a radio-frequency transformer and dielectric oil. The window plate, which is transparent to optical light, covers a first portion of the base bracket in which the photoconductive switch is located. The window plate is sealed to the base bracket. The lid, which includes a cutout to allow the radio-frequency transformer to pass through the lid, covers a second portion of the base bracket in which the radio-frequency transformer is located. The window plate is sealed to the base bracket, and the lid is sealed to the window plate, the base bracket and the radio-frequency transformer to contain the dielectric oil within the microwave module.
Abstract:
A steerable high-power microwave beam array includes an optical sub-system comprising a laser and an optical time delay unit and a parallel set of RF time delay units. The optical system and/or the RF delay subsystem are utilized to precisely delay the pulses from the microwave antenna elements to provide steerable beam forming.
Abstract:
The system and method of using an ultra-short pulse mid and long wave infrared laser. The system is seeded with a 2 μm laser source having a pulse duration in the femtosecond range. The beam is stretched, to increase the pulse duration, and the beam is amplified, to increase an energy level of the laser beam. Both mid wave IR and long wave IR seed beams are first generated, and then amplified via one or more optical parametric chirped-pulse amplification stages. A compressor may be used to compress one or more of the output beams to achieve high peak power and controllable pulse duration in the output beams. The output beams may then be used to create atmospheric or material effects at km range.
Abstract:
The system and method for enhancing and suppressing radio frequency (RF) emissions in a laser induced plasma system using a second laser. A first igniter laser is used at short pulse widths and a second heater laser is used at longer pulse widths. By varying the energy of the heater laser and/or the timing of the arrival of the heater laser with respect to the igniter laser suppression and/or enhancement of the radio frequency (RF) emission from the induced plasma system is possible.
Abstract:
Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.