Abstract:
Catalytic and/or sorptive articles comprising a metal fiber felt, the metal felt having an array of metal fibers and voids and a catalyst composition and/or a sorbent composition disposed on the metal fibers and within the voids are described. Such articles can be highly effective towards the abatement of pollutants in exhaust gas streams from internal combustion engines.
Abstract:
A diesel oxidation catalyst composition is provided, the composition including at least one platinum group metal impregnated onto a porous refractory oxide material in particulate form and at least one base metal oxide impregnated onto a porous refractory oxide material in particulate form, wherein the porous refractory oxide material impregnated with at least one platinum group metal and the porous refractory oxide material impregnated with at least one base metal oxide are in the form of a mixture or wherein the at least one platinum group metal and the at least one base metal oxide are impregnated on the same porous refractory oxide material. The diesel oxidation catalyst provides synergistic enhancement of carbon monoxide oxidation as well as relatively unimpaired hydrocarbon oxidation. Methods of making and using the catalyst composition are also provided, as well as emission treatment systems comprising a catalyst article coated with the catalyst composition.
Abstract:
Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalyst composition comprises an oxidation catalyst comprising a washcoat layer including a platinum group metal supported on a refractory metal oxide support and porous molecular sieve particles having internal pores, the molecular sieve particles protected by a protecting material selected from an organic wax encapsulating the molecular sieve particles, a polymer encapsulating the molecular sieve particles, an inorganic oxide deposited on the surface of the molecular sieve particles, or an organic compound filling the internal pores of the molecular sieve particles, wherein the protecting material prevents interaction of the molecular sieve particles with the platinum group metal.
Abstract:
The invention provides a metal fiber felt including a woven or nonwoven mixture of fibers including a first plurality of core/shell catalytic metal fibers and an optional second plurality of reinforcing fibers, wherein the catalytic metal fibers include a core including a first metal and a shell including a catalytic metal, the catalytic metal being a noble metal, a base metal, or a combination thereof, and wherein the average diameter of the reinforcing fibers, when present, is greater than the average diameter of the catalytic metal fibers. The metal fiber felt is useful in catalytic articles for use in the abatement of pollutants in exhaust gas streams from internal combustion engines and other environmental and/or chemical catalytic processes.
Abstract:
An oxidation catalyst composition is provided, the composition including at least one platinum group metal impregnated onto a porous alumina material, wherein the porous alumina material comprises a copper-alumina spinel phase. At least a portion of the copper-alumina spinel phase can be proximal to, or in direct contact with, at least one platinum group metal crystallite, such as a crystallite having a size of about 1 nm or greater. The close proximity of the copper-alumina spinel phase to the platinum group metal crystallite is believed to provide synergistic enhancement of carbon monoxide oxidation. Methods of making and using the catalyst composition are also provided, as well as emission treatment systems comprising a catalyst article coated with the catalyst composition.
Abstract:
Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalyst composition comprises an oxidation catalyst comprising a washcoat layer including a platinum group metal supported on a refractory metal oxide support and porous molecular sieve particles having internal pores, the molecular sieve particles protected by a protecting material selected from an organic wax encapsulating the molecular sieve particles, a polymer encapsulating the molecular sieve particles, an inorganic oxide deposited on the surface of the molecular sieve particles, or an organic compound filling the internal pores of the molecular sieve particles, wherein the protecting material prevents interaction of the molecular sieve particles with the platinum group metal.