Abstract:
Use of an acid-treated titanium-containing zeolitic material having framework type MWW for preparing a composition having a relative plasticity of less than 1.
Abstract:
A process for preparing a tin-containing zeolitic material having an MWW-type framework structure comprising providing a zeolitic material having an MWW-type framework structure having vacant tetrahedral framework sites, providing a tin-ion source in solid form, and incorporating tin into the zeolitic material via solid-state ion exchange.
Abstract:
A process for preparing an extrudable composition comprising a titanium-containing zeo-litic material having framework type MWW, the process comprising providing a titanium-containing zeolitic material having framework type MWW, having a water absorption ca-pacity of at least 11 weight-%, subjecting the titanium-containing zeolitic material having framework type MWW an acid treatment, optionally incorporating zinc in the acid-treated titanium-containing zeolitic material having framework type MWW; preparing a composi-tion comprising the titanium-containing zeolitic material having framework type MWW obtained from (ii) or (iii), a precursor of a silica binder, water, and a kneading agent, wherein the composition does not comprise a polyethylene oxide.
Abstract:
A process for the preparation of a zeolitic material having an MWW framework structure and comprising boron and titanium, the process comprising (i) providing an aqueous synthesis mixture comprising a silica source, a boron source, a titanium source, and an MWW templating agent; (ii) heating the aqueous synthesis mixture to a temperature in the range of from 160 to 190° C.; (iii) subjecting the synthesis mixture (ii) to hydrothermal synthesis conditions, obtaining, in its mother liquor, a precursor of the zeolitic material; (iv) separating the precursor from its mother liquor; (v) calcining the separated precursor, obtaining the zeolitic material having an MWW framework structure and comprising boron and titanium.
Abstract:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
Abstract:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
Abstract:
A process for the preparation of a titanium-containing zeolitic material having an MWW framework structure, the process comprising (i) providing a zeolitic material having an MWW framework structure comprising SiO2 and B2O3, (ii) incorporating titanium into the zeolitic material provided in (i) comprising (ii.1) preparing an aqueous synthesis mixture containing the zeolitic material provided in (i), an MWW template compound and a titanium source, (ii.2) hydrothermally synthesizing a titanium-containing zeolitic material having an MWW framework structure from the aqueous synthesis mixture prepared in (ii.1), obtaining a mother liquor comprising the titanium-containing zeolitic material having an MWW framework structure; (iii) spray-drying the mother liquor obtained from (ii.2) comprising the titanium-containing zeolitic material having an MWW framework structure.
Abstract translation:一种制备具有MWW骨架结构的含钛沸石材料的方法,该方法包括(i)提供具有包含SiO 2和B 2 O 3的MWW骨架结构的沸石材料,(ii)将钛掺入提供于( i)包括(ii.1)制备含有(i)中提供的沸石材料的水性合成混合物,MWW模板化合物和钛源,(ii.2)水热合成具有MWW骨架结构的含钛沸石材料 从(ii.1)中制备的水性合成混合物得到含有具有MWW骨架结构的含钛沸石材料的母液; (iii)喷雾干燥由(ii.2)得到的母液,该母液包含具有MWW骨架结构的含钛沸石材料。