Abstract:
Bio-based surfactants have great opportunity for use in a variety of applications such as laundry detergents, industrial cleaners, adjuvants, and oil & gas. Surfactants in these applications can be nonionic, anionic, cationic, or amphoteric. Utilizing high oleic soybean oil as a platform chemical, a variety of surfactants and properties can be produced. While early work focused solely on surfactant use in laundry cleaning and fracking, recent work has expanded functional groups and application evaluations in hard surface cleaning. The current invention expands on Battelle's high oleic soybean oil (HOSO) surfactant technology. Use of HOSO overcomes the limitations of regular soybean oil and significantly reduces or eliminates undesirable byproducts in most chemistries. However, with use of select reagents, a few candidates were achievable with regular epoxidized soybean oil (ESO). The HOSO surfactant platform offers several key advantages including: a highly water miscible (not typical of C18 surfactants) and water stable surfactant; ability to adjust and vary hydrophilic-lipophilic (HLB) values for stain removal performance; and increased biodegradability without toxic or persistent by-products.
Abstract:
Fatty acid based surfactants and methods for producing fatty acid based surfactants are described. The method includes reacting a fatty acid ester epoxide with a hydroxy acid, a hydroxy ester, a polyoxyalkyl diol, or a polyamine. Any remaining esters from the original fatty acid ester epoxide or hydroxy ester can optionally be hydrolyzed. Methods for making citric acid derived surfactants are also described.
Abstract:
Unique methods have been developed to convert polysaccharides into value-added products, such as levulinic acid and alkyl levulinates. The polysaccharides are heated in the presence of water, an alcohol, and an acid to cleave the polysaccharide, and the resulting monosacchrides or monosaccharide acetals or both are contacted with an acid in the presence of an alcohol at a higher temperature. Useful acids include Brønsted acid catalysts and Lewis acid catalysts including mineral acids, metal halides, immobilized heterogeneous catalysts functionalized with a Brønsted acid group or a Lewis acid group, or combinations thereof.
Abstract:
Methods are provided for producing bio-oil polyols, alkoxylating bio-oil polyols to provide polyols, and for employing the alkoxylated bio-oil polyols for making polymers or copolymers of polyesters or polyurethanes. Compositions and methods are provided for incorporating bio-oils into phenolic resins such as phenol-formaldehyde resin and phenol-formaldehyde-urea resin, as well as hot melt adhesive compositions.
Abstract:
Processes for treating highly viscous hydrocarbons, such as bitumen from oil sands or petroleum residues, with hydrogen-donor solvents are described. The hydrogen-donor solvent is prepared. A mixture of the hydrocarbon and the hydrogen-donor solvent is heated, and the product is cooled to produce a low viscosity and mildly upgraded hydrocarbon. The hydrogen-donor solvent can be modified to improve its solvent usefulness.
Abstract:
A process of producing a distillate fuel from coal includes: preparing a biomass-derived coal solvent; dissolving the coal in the biomass-derived solvent; and separating undissolved coal and mineral matter to produce a syncrude. In certain embodiments, the process further includes subjecting the syncrude to a hydrotreatment/hydrogenation process to produce a distillate fuel. In certain embodiments, the biomass-derived solvent is a hydrogen-donor solvent. A method to improve direct coal liquefaction includes: using a non-hydrogenated lipid in a direct coal liquefaction process to facilitate coal depolymerization. In certain embodiments, the lipid is a polyunsaturated biobased oil. A method for using a biomass-derived feedstock as a hydrogen donor includes: providing a biomass-derived feedstock; modifying the feedstock to improve its usefulness as a hydrogen donor; and conducting a transfer hydrogenation process using the modified feedstock as a hydrogen donor. In certain embodiments, the transfer hydrogenation process is a direct coal liquefaction process.
Abstract:
Powder coating resins and coatings made using the powder coating resins are described. The powder coating resins are based on the use of C12 to C23 diacids. The C12 to C23 diacids are reacted with a reactant having an alcohol functionality and an amine functionality to form a carboxylic acid terminated polymer having ester and amide functionality. Alternatively, the C12 to C23 diacids are reacted with a reactant having an alcohol functionality and an amine functionality to form an intermediate polyol, which is then reacted with acetoacetic acid or an ester thereof to form an acetoacetate-terminated polymer.
Abstract:
Powder coating resins and coatings made using the powder coating resins are described. The powder coating resins are based on the use of C12 to C23 diesters. The C12 to C23 diesters are reacted with a reactant having an alcohol functionality and an amine functionality to form an intermediate polyol, followed by reaction with a diacid to a carboxylic acid terminated polymer having ester and amide functionality.
Abstract:
A process of producing a distillate fuel from lignin includes: preparing a biomass-derived lignin solvent; dissolving the lignin in the biomass-derived solvent; and separating undissolved lignin and mineral matter to produce a syncrude. In certain embodiments, the process further includes subjecting the syncrude to a hydrotreatment/hydrogenation process to produce a distillate fuel. A process to improve direct lignin liquefaction includes: using a non-hydrogenated lipid in a direct lignin liquefaction process to facilitate lignin depolymerization. A process for using a biomass-derived feedstock as a hydrogen donor includes: providing a biomass-derived feedstock; modifying the feedstock to improve its usefulness as a hydrogen donor; and conducting a transfer hydrogenation process using the modified feedstock as a hydrogen donor.