摘要:
A method and apparatus for efficient memory allocation and system management interrupt (SMI) handling is herein described. Upon waking a second processor in a multiple processor system, one may use a single SMI to initialize each processor, may use the location of a single default SMI handler as a wake-up vector to the second processor, and may patch an instruction pointer to a non-aligned address during the handling of the SMI with the second processor to forgo the traditional extra aligned memory allocation. In addition, one may use unified handler code to handle software generated SMIs on both the first and second processors and may use exit SMM directly after handling a hardware SMI to save execution time.
摘要:
A method and apparatus for optimization of multiprocessor synchronization and allocation of system management memory space is herein described. When a system management interrupt (SMI) is received, a first processor checks the state of a second processor, which may be done by checking a storage medium storing values representative of the second processor's state. The first processor handles the SMI or waits for the second processor dependent on the state of the second processor. Furthermore, system management memory is allocated where a first system management memory space assigned to a first processor overlaps a second system management memory space assigned to a second processor, leaving first and second non-overlapping region.
摘要:
A power management technique uses system management interrupt (SMI) to manage performance states of logical processors in a physical processor. Each logical processor is associated with a virtual performance state and an actual performance state. A request to retrieve or to change the virtual performance state causes the SMI to be generated. The virtual performance state is a state known to an operating system (OS). The actual performance state is a state that the logical processor is operating at.
摘要:
A power management technique uses system management interrupt (SMI) to manage states of a processor that includes multiple logical processors. When the SMI is generated, the states of logical processors are verified. When all of the logical processors are idle, the physical processor is placed in a low power state.