摘要:
The invention relates to a capacitive sensing apparatus for sensing an object, wherein the capacitive sensing apparatus comprises a capacitive sensor (2) for capacitively sensing the object (3) and an enclosure (4) for enclosing the capacitive sensor (2). The enclosure (4) comprises a contact side (6) for contacting the object (3) during sensing, wherein the enclosure (4) and the capacitive sensor (2) are adapted for sensing the object (3) by the capacitive sensor (2) through the contact side (6) of the enclosure (4). The enclosure (4) and the capacitive sensor (2) are separable from each other for using the capacitive sensor (2) as a reusable device and for using the enclosure (4) as a disposable device. This allows capacitively sensing an object with a new, uncontaminated enclosure (4) and a reused capacitive sensor (2) and, thus, under improved hygienic conditions.
摘要:
An apparatus and method (4,5,6,7,2) for capacitive measurement of electrophysiological signals (1) suppresses or reduces motion artifacts by providing a feedback mechanism. An average voltage between a capacitive sensor electrode (1) and the body (3) is controlled so as to reduce or minimize motion-induced signals.
摘要:
The invention relates to a capacitive sensing apparatus for sensing an object, wherein the capacitive sensing apparatus comprises a capacitive sensor (2) for capacitively sensing the object (3) and an enclosure (4) for enclosing the capacitive sensor (2). The enclosure (4) comprises a contact side (6) for contacting the object (3) during sensing, wherein the enclosure (4) and the capacitive sensor (2) are adapted for sensing the object (3) by the capacitive sensor (2) through the contact side (6) of the enclosure (4). The enclosure (4) and the capacitive sensor (2) are separable from each other for using the capacitive sensor (2) as a reusable device and for using the enclosure (4) as a disposable device. This allows capacitively sensing an object with a new, uncontaminated enclosure (4) and a reused capacitive sensor (2) and, thus, under improved hygienic conditions.
摘要:
The present invention relates to an apparatus and method (4,5,6,7,2) for capacitive measurement of electrophysiological signals (1) wherein motion artifacts are suppressed or reduced by providing a feedback mechanism. An average voltage between a capacitive sensor electrode (1) and the body (3) is controlled so as to reduce or minimize motion-induced signals.
摘要:
The invention relates to capacitive sensing system (1) for sensing an object. The capacitive sensing system (1) comprises an electrical charge providing unit (4) like an electret foil for providing a permanent electrical charge at a sensing site (6) of the object (3) and a capacitive sensor (2) comprising a sensing electrode (5) for generating a sensing signal by capacitively sensing the object (3) at the sensing site (6) of the object (3). By providing a permanent electrical charge at the sensing site (6) of the object (3), the bias between the object (3) and the sensing electrode (5) of the capacitive sensor (2) is intentionally preferentially made large, thereby increasing the sensitivity towards mechanical motions. The resulting sensing signal substantially caused by these mechanical motions between the object (3) and the sensing electrode (5) is generally larger than a signal generated substantially by an electrophysiological field.
摘要:
A capacitive sensing system (1) which includes an electrical charge providing unit (4) like an electret foil for providing a permanent electrical charge at a sensing site (6) of the object (3) and a capacitive sensor (2) including a sensing electrode (5) for generating a sensing signal by capacitively sensing the object (3) at the sensing site (6) of the object (3). By providing a permanent electrical charge at the sensing site (6) of the object (3), the bias between the object (3) and the sensing electrode (5) of the capacitive sensor (2) is intentionally preferentially made large, thereby increasing the sensitivity towards mechanical motions. The resulting sensing signal substantially caused by these mechanical motions between the object (3) and the sensing electrode (5) is generally larger than a signal generated substantially by an electrophysiological field.
摘要:
The invention relates to a system and a method in which an electrophysiological signal is sensed capacitively with at least two closely spaced electrodes such that the electrodes experience strongly correlated skin-electrode distance variations. To be able to derive a motion artifact signal, the capacitive coupling between the electrodes and skin is made intentionally different. With a signal processing means the motion artifact signal can be removed from the measured signal to leave only the desired electrophysiological signal. Since the measured quantity is dependant on the electrode-skin distance itself, the system and method do not need to rely on the constancy of a transfer function. Hereby, they give reliable motion artifact free output signals.
摘要:
The invention relates to an electrochemical energy source, comprising a substrate, and at least one cell deposited onto said substrate. The invention also relates to an electronic device, said device comprising at least one electrochemical energy source according to invention, and at least one electronic component electrically connected to said electrochemical energy source.
摘要:
A wobble signal is generated from at least two elementary signals (A,B,C,D) detected by scanning a wobbled track of a data carrier. The invention proposes a solution for eliminating the noise of various origins in the wobble signal, notably the high frequency data leakage into the wobble signal due to radial asymmetry introduced in the diffraction pattern on the detector, whatever the reason for this radial asymmetry. According to the invention, the at least two elementary signals are filtered with at least an adaptive filter (40), and said filtered elementary signals are subtracted (44) from said wobble signal (PP) thereby generating an improved wobble signal.
摘要:
The invention relates to a system and a method in which an electrophysiological signal is sensed capacitively with at least two closely spaced electrodes such that the electrodes experience strongly correlated skin-electrode distance variations. To be able to derive a motion artifact signal, the capacitive coupling between the electrodes and skin is made intentionally different. With a signal processing means the motion artifact signal can be removed from the measured signal to leave only the desired electrophysiological signal. Since the measured quantity is dependant on the electrode-skin distance itself, the system and method do not need to rely on the constancy of a transfer function. Hereby, they give reliable motion artifact free output signals.