摘要:
Disclosed is an apparatus and method for detecting whether rotatable MEMS elements are in the “on” or “off” position. Embodiments of the invention have application in devices switches that employ mirrors that move between an “on” or “off” position, wherein they reflect light from an input fiber into an output fiber in the “on” position, and allow the light to pass in the “off” position. Electrodes are positioned in the device such that the mirrors are close to, and therefor capacitively coupled to, a different electrode depending on whether they are in the “on” or “off” position. This invention is especially useful for switches that already employ electrodes for electrostatic clamping of mirrors in one or more positions, since those same electrodes can be used both to electrostatically clamp the mirrors and to sense their position. The method described in this invention comprises sensing of the capacitance between the mirrors and the one or more electrodes used to clamp the mirrors in its one or more position in order to detect which of the positions the mirrors are clamped in. Furthermore, the magnitude of the capacitances can be monitored to detect improper clamping.
摘要:
An optical microelectromechanical system (MEMS) device and a method for making it are disclosed. The device generally includes a substrate with two or more device dies attached to the substrate. Each device die includes one or more MEMS optical elements. A common clamping die is attached to the device dies such that each MEMS optical element aligns with a corresponding clamping surface on the common clamping die. The single larger clamping die, which covers all the elements on the smaller device dies, forces mirrors contained thereon to register accurately, in the “ON” state. Such a device may be made by attaching two or more device dies to a substrate, and attaching a common clamping die to the two or more device dies. The device dies may be attached to the substrate before attaching the common clamping die to the device dies. Alternatively, the common clamping die may be attached to the device dies before the device dies are attached to the substrate. High yields may be achieved since simple semiconductor process may be used to fabricate the larger clamping die.
摘要:
An electrical interconnect for an inkjet printhead comprising an ink-ejecting semiconductor die is described. The ink-ejecting die further comprises a substrate having an opposing upper surface, lower surface, and a thin film stack. The upper surface of the substrate is beveled on at least one edge such that a lower portion of the bevel is below an upper portion of the bevel. A conductive material trace is disposed on top of at least a portion of the upper surface and the thin film stack and on the bevel towards the lower portion of the bevel. An electrical conductor is coupled to the conductive material trace at a predetermined location below the upper portion of the bevel. In a preferred embodiment of the current invention, the conductive material trace is substantially below the surface of the printhead thereby creating a robust printhead having several advantages including but not limited to: (1) electrical interconnects that are solidified in an encapsulant and therefore protected from chemical etching of the ink and vibrational/physical forces generated by the printer, (2) minimized die to printing medium distance and (3) minimized ESD effects on the beveled die.
摘要:
A printhead is formed from a plurality of ink ejectors mounted on an inner surface of a rigid substrate while protruding through holes provided in the substrate. Electrical contact is provided on a surface of the ink ejectors common with the ink ejecting nozzles thereby avoiding vias to another surface. The rigid substrate provides a conducting layer on its inner surface such that the ink ejectors may be connected thereto with solder reflow techniques.
摘要:
A method of forming an electrical connection for a fluid ejection device including a fluid channel communicating with a first side and a second side of the fluid ejection device and an array of drop ejecting elements formed on the first side of the fluid ejection device includes forming a trench in the second side of the fluid ejection device, depositing a conductive material in the trench, forming a first opening in the fluid ejection device between the first side of the fluid ejection device and the conductive material in the trench, depositing a conductive material in the first opening, and forming a conductive path between the conductive material in the first opening and a wiring line of one of the drop ejecting elements.
摘要:
A printhead is formed from a plurality of ink ejectors mounted on an inner surface of a rigid substrate while protruding through holes provided in the substrate. Electrical contact is provided on a surface of the ink ejectors common with the ink ejecting nozzles thereby avoiding vias to another surface. The rigid substrate provides a conducting layer on its inner surface such that the ink ejectors may be connected thereto with solder reflow techniques.
摘要:
A fluid ejecting device with a body defining an array of nozzles. The nozzles are arranged in an array along an array axis. The array has a first portion in which the nozzles are spaced apart along the array axis by a first pitch, and a second portion in which the nozzles are spaced apart by a different second pitch. The array may have a third portion between the first and second portions with a third pitch different from the first and second pitch. An assembly may include two or more of such fluid ejection devices, and the second portion of one print head may be aligned with the first portion of the other print head. Printers incorporating the fluid ejection devices and printing methods are also disclosed.
摘要:
A scalable wide-array printhead is formed by mounting multiple thermal inkjet printheads to a carrier substrate. The printheads are mounted to one face and logic ICs and drive ICs are mounted to an opposite face. Interconnects are formed through the carrier substrate to electrically couple the printheads to the logic ICs and drive ICs. The carrier substrate is formed of silicon and etched to define ink refill slots. A solder bump mounting process is used to mount the printheads to the carrier substrate. Such process serves to align each of the printheads. The solder forms a fluidic boundary around a printhead ink slot.
摘要:
An electrical interconnect for an inkjet printhead comprising an ink-ejecting semiconductor die is described. The ink-ejecting die further comprises a substrate having an opposing upper surface, lower surface, and a thin film stack. The upper surface of the substrate is beveled on at least one edge such that a lower portion of the bevel is below an upper portion of the bevel. A conductive material trace is disposed on top of at least a portion of the upper surface and the thin film stack and on the bevel towards the lower portion of the bevel. An electrical conductor is coupled to the conductive material trace at a predetermined location below the upper portion of the bevel. In a preferred embodiment of the current invention, the conductive material trace is substantially below the surface of the printhead thereby creating a robust printhead having several advantages including but not limited to: (1) electrical interconnects that are solidified in an encapsulant and therefore protected from chemical etching of the ink and vibrational/physical forces generated by the printer, (2) minimized die to printing medium distance and (3) minimized ESD effects on the beveled die.
摘要:
A method of mounting a fluid ejection device having a first plurality of pads on a carrier substrate having a corresponding second plurality of pads includes positioning the first plurality of pads with respect to the second plurality of pads, and melting solder between the first plurality of pads and the second plurality of pads. Melting the solder includes aligning the first plurality of pads with respect to the second plurality of pads with a solder reflow force and forming a fluidic boundary between the fluid ejection device and the carrier substrate with the solder.