摘要:
The invention relates to monoclonal antibodies (MAbs) and fragments thereof which bind to defined tumor-associated antigens, principally of small cell lung carcinoma (SCLC), of melanoma, of neuroblastoma and other tumors of neuroectodermal origin, to hybridoma cell lines for the preparation thereof, and to the antigens which can be defined and/or isolated with the aid of these antibodies or antibody fragments. The antibodies, antibody fragments and antigens can be used as diagnostic. aid, active substance or active substance carrier.
摘要:
The invention relates to monoclonal antibodies (MAbs) and fragments thereof which bind to defined tumor-associated antigens, principally of small cell lung carcinoma (SCLC), of melanoma, of neuroblastoma and other tumors of neuroectodermal origin, to hybridoma cell lines for the preparation thereof, and to the antigens which can be defined and/or isolated with the aid of these antibodies or antibody fragments. The antibodies, antibody fragments and antigens can be used as diagnostic, aid, active substance or active substance carrier.
摘要:
The invention relates to an improved diagnostic method for the immunological determination of NCAM by means of specific binding partners, the one specific binding partner being immobilized on a carrier and the extent of the binding of the analyte to the first specific binding partner being determined by means of a second binding partner which is specific for the analyte and which is labeled either directly or via further binding partners.
摘要:
The invention relates to murine monoclonal antibodies (MAbs), A, B, C and D, which are directed against tumor-associated antigens. The nearly complete nucleotide sequences of the V genes of these MAbs are described, so that the relevant variable domains can be put together to give chimeric MAbs, or “humanized” MAbs are obtained by inserting the hypervariable regions (complementarity determining regions=CDR) into a human MAb framework. Antibody constructs of this type can be employed in human therapy and in vivo diagnosis without the disadvantages observed with murine MAbs.
摘要:
The invention relates to murine monoclonal antibodies (MAbs), A, B, C and D, which are directed against tumor-associated antigens. The nearly complete nucleotide sequences of the V genes of these MAbs are described, so that the relevant variable domains can be put together to give chimeric MAbs, or “humanized” MAbs are obtained by inserting the hypervariable regions (complementarity determining regions=CDR) into a human MAb framework. Antibody constructs of this type can be employed in human therapy and in vivo diagnosis without the disadvantages observed with murine MAbs.
摘要:
The invention relates to murine monoclonal antibodies (MAbs), A, B, C and D, which are directed against tumor-associated antigens. The nearly complete nucleotide sequences of the V genes of these MAbs are described, so that the relevant variable domains can be put together to give chimeric MAbs, or “humanized” MAbs are obtained by inserting the hypervariable regions (complementarity determining regions=CDR) into a human MAb framework. Antibody constructs of this type can be employed in human therapy and in vivo diagnosis without the disadvantages observed with murine MAbs.
摘要:
The invention relates to a method of using a pair of leucine zipper peptides for in vitro diagnosis, in particular, for the immunochemical detection and determination of an analyte in a biological liquid. In one method, the first leucine zipper peptide is immobilized by attaching it to a solid support, the second leucine zipper peptide is coupled to a specific binding partner for the analyte, the two peptides are brought into contact, the sample of the biological liquid is brought into contact with the immobilized first peptide and the specific binding partner for the analyte, and the amount of analyte bound to the binding partner is determined. The leucine zipper peptides are preferably v-fos and c-jun.
摘要:
The invention relates to murine monoclonal antibodies (MAbs), A, B, C and D, which are directed against tumor-associated antigens. The nearly complete nucleotide sequences of the V genes of these MAbs are described, so that the relevant variable domains can be put together to give chimeric MAbs, or “humanized” MAbs are obtained by inserting the hypervariable regions (complementarity determining regions ═CDR) into a human MAb framework. Antibody constructs of this type can be employed in human therapy and in vivo diagnosis without the disadvantages observed with murine MAbs.