摘要:
A method can be used to provide at least one optoelectronic semiconductor component, A carrier includes a first surface and a second surface opposite the first surface. At least one optoelectronic semiconductor chip is arranged on the first surface of the carrier. The optoelectronic semiconductor chip is formed with at least one n-side region and at least one p-side region, and is applied with the n-side region or the p-side region to the first surface. An electrically insulating enclosure is arranged on exposed points of the outer faces of the semiconductor chip and of the first surface of the carrier. The electrically insulating enclosure is partially removed. After removal at least one major face, remote from the carrier, of the optoelectronic semiconductor chip is free of the electrically insulating enclosure at least in places.
摘要:
A method can be used to provide at least one optoelectronic semiconductor component, A carrier includes a first surface and a second surface opposite the first surface. At least one optoelectronic semiconductor chip is arranged on the first surface of the carrier. The optoelectronic semiconductor chip is formed with at least one n-side region and at least one p-side region, and is applied with the n-side region or the p-side region to the first surface. An electrically insulating enclosure is arranged on exposed points of the outer faces of the semiconductor chip and of the first surface of the carrier. The electrically insulating enclosure is partially removed. After removal at least one major face, remote from the carrier, of the optoelectronic semiconductor chip is free of the electrically insulating enclosure at least in places.
摘要:
An optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer and a light-outcoupling layer applied at least indirectly on a radiation permeable surface of the semiconductor layer sequence. A material of the light-outcoupling layer is different from a material of the semiconductor layer sequence and refractive indices of the materials of the light-outcoupling layer and of the semiconductor layer sequence differ from each other by 20% at most. Recesses in the light-outcoupling layer form facets, wherein the recesses do not penetrate the light-outcoupling layer completely. The facets have a total area of at least 25% of an area of the radiation permeable surface.
摘要:
An optoelectronic semiconductor component comprising a semiconductor layer sequence (3) based on a nitride compound semiconductor and containing an n-doped region (4), a p-doped region (8) and an active zone (5) arranged between the n-doped region (4) and the p-doped region (8) is specified. The p-doped region (8) comprises a p-type contact layer (7) composed of InxAlyGa1-x-yN where 0≦x≦1, 0≦y≦1 and x+y≦1. The p-type contact layer (7) adjoins a connection layer (9) composed of a metal, a metal alloy or a transparent conductive oxide, wherein the p-type contact layer (7) has first domains (1) having a Ga-face orientation and second domains (2) having an N-face orientation at an interface with the connection layer (9).
摘要翻译:一种光电子半导体部件,包括基于氮化物化合物半导体的半导体层序列(3),并且包含n掺杂区域(4),p掺杂区域(8)和有源区域(5) 区域(4)和p掺杂区域(8)。 p掺杂区域(8)包括由In x Al y Ga 1-x-y N组成的p型接触层(7),其中0和nlE; x和nlE; 1,0和nlE; y和nlE; 1和x + y和nlE; 1。 p型接触层(7)与由金属,金属合金或透明导电氧化物构成的连接层(9)相邻,其中p型接触层(7)具有第一畴(1) 面取向和在与连接层(9)的界面处具有N面取向的第二域(2)。
摘要:
A method for fabricating at least one mesa or ridge structure in a layer or layer sequence, in which a sacrificial layer (4) is applied and patterned above the layer or layer sequence. A mask layer is applied and patterned above the sacrificial layer for definition of the mesa or ridge dimensions. The sacrificial layer (4) and of the layer or layer sequence are removed so that the mesa or ridge structure is formed in the layer or layer sequence. A part of the sacrificial layer (4) is selectively removed from the side areas thereof which have been uncovered in the previous step, so that a sacrificial layer remains which is narrower in comparison with a layer that has remained above the sacrificial layer as seen from the layer or layer sequence. A coating is applied at least to the sidewalls of the structure produced in the previous steps so that the side areas of the residual sacrificial layer are not completely overformed by the coating material. The sacrificial layer (4) is removed so that the layer that has remained above the sacrificial layer as seen from the layer or layer sequence is lifted off. A method is also disclosed for fabricating at least one gain-controlled laser diode in a layer sequence, in which method steps analogous to those described above are employed.
摘要:
An optoelectronic semiconductor component comprising a semiconductor layer sequence (3) based on a nitride compound semiconductor and containing an n-doped region (4), a p-doped region (8) and an active zone (5) arranged between the n-doped region (4) and the p-doped region (8) is specified. The p-doped region (8) comprises a p-type contact layer (7) composed of InxAlyGa1-x-yN where 0≦x≦1, 0≦y≦1 and x+y≦1. The p-type contact layer (7) adjoins a connection layer (9) composed of a metal, a metal alloy or a transparent conductive oxide, wherein the p-type contact layer (7) has first domains (1) having a Ga-face orientation and second domains (2) having an N-face orientation at an interface with the connection layer (9).
摘要翻译:一种光电子半导体部件,包括基于氮化物化合物半导体的半导体层序列(3),并且包含n掺杂区域(4),p掺杂区域(8)和有源区域(5) 区域(4)和p掺杂区域(8)。 p掺杂区域(8)包括由In x Al y Ga 1-x-y N组成的p型接触层(7),其中0和nlE; x和nlE; 1,0和nlE; y和nlE; 1和x + y和nlE; 1。 p型接触层(7)与由金属,金属合金或透明导电氧化物构成的连接层(9)相邻,其中p型接触层(7)具有第一畴(1) 面取向和在与连接层(9)的界面处具有N面取向的第二域(2)。
摘要:
In at least one embodiment of the optoelectronic semiconductor chip (1), the latter comprises a semiconductor layer sequence (2) comprising at least one active layer (3) designed for generating an electromagnetic radiation. Furthermore, the optoelectronic semiconductor chip (1) has coupling-out structures (4), which are fitted at least indirectly on a radiation passage area (20) of the semiconductor layer sequence (2). In this case, a material of the coupling-out structures (4) is different than a material of the semiconductor layer sequence (2). The refractive indices of the materials of the coupling-out structures (4) and of the semiconductor layer sequence (2) deviate from one another by at most 30%. Furthermore, facets (40) of the coupling-out structures (4) have a total area amounting to at least 30% of an area content of the radiation passage area (20).
摘要:
In at least one embodiment of the optoelectronic semiconductor chip (1), the latter comprises a semiconductor layer sequence (2) comprising at least one active layer (3) designed for generating an electromagnetic radiation. Furthermore, the optoelectronic semiconductor chip (1) has coupling-out structures (4), which are fitted at least indirectly on a radiation passage area (20) of the semiconductor layer sequence (2). In this case, a material of the coupling-out structures (4) is different than a material of the semiconductor layer sequence (2). The refractive indices of the materials of the coupling-out structures (4) and of the semiconductor layer sequence (2) deviate from one another by at most 30%. Furthermore, facets (40) of the coupling-out structures (4) have a total area amounting to at least 30% of an area content of the radiation passage area (20).