摘要:
The present invention relates to a method for mitigating formation of silicon grass. A silylation process is performed on a semiconductor structure, the structure including a photoresist layer, an underlayer under the photoresist layer, and a substrate under the underlayer. A chemical mechanical polishing process is employed to remove a portion of the photoresist layer.
摘要:
The present invention relates to a system for controllably removing photoresist. A CMP system is employed for polishing the photoresist. A non-abrasive polishing liquid adapted to react with the photoresist to sufficiently modify bonding in the photoresist is employed to facilitate surface layer removal of the photoresist by applied mechanical stress from the CMP system.
摘要:
The present invention relates to a method for mitigating T-tops and/or stringers and/or crusts in a structure. A photoresist layer of the structure is exposed. The structure further includes an underlayer under the photoresist layer, and a substrate under the underlayer. A chemical mechanical polishing process is employed to remove a predetermined thickness of the photoresist layer. An underlayer etch is performed to remove select portions of the underlayer.
摘要:
Systems and/or methods are disclosed for measuring and/or controlling an amount of impurity that is dissolved within an immersion medium employed with immersion lithography. The impurity can be photoresist from a photoresist layer coated upon a substrate surface. A known grating structure is built upon the substrate. A real time immersion medium monitoring component facilitates measuring and/or controlling the amount of impurities dissolved within the immersion medium by utilizing light scattered from the known grating structure.
摘要:
One aspect of the present invention relates to a method for making a dual damascene pattern in an insulative layer in a single etch process involving providing a wafer having at least one insulative layer formed thereon; depositing a first photoresist layer over the at least one insulative layer; patterning a first image into the first photoresist layer; curing the first patterned photoresist layer; depositing a second photoresist layer over the first patterned photoresist layer; patterning a second image into the second photoresist layer; and etching the at least one insulative layer through the first patterned photoresist layer and the second patterned photoresist layer simultaneously in the single etch process.
摘要:
A system for regulating an etch process is provided. The system includes one or more light sources, each light source directing light to one or more features and/or gratings on a wafer. Light reflected from the features and/or gratings is collected by a measuring system, which processes the collected light. The collected light is indicative of the dimensions achieved at respective portions of the wafer. The measuring system provides etching related data to a processor that determines the acceptability of the etching of the respective portions of the wafer. The system also includes one or more etching devices, each such device corresponding to a portion of the wafer and providing for the etching thereof. The processor selectively controls the etching devices to regulate etching of the portions of the wafer.
摘要:
The present invention relates to inspection methods and systems utilized to provide a best means for inspection of a wafer. The methods and systems include wafer-to-reticle alignment, layer-to-layer alignment and wafer surface feature inspection. The wafer-to-reticle alignment is improved by the addition of diagonal lines to existing alignment marks to decrease the intersection size and corresponding area that a desired point can reside. Layer-to-layer alignment is improved in a similar manner by the addition of oblique and/or non-linear line segments to existing overlay targets. Also, providing for wafer surface inspection in a multitude of desired diagonal axes allows for more accurate feature measurement.
摘要:
A system for selectively generating and feeding forward reticle fabrication data is provided. The system includes components for fabricating a reticle and a control system operatively connected to the fabricating components, where the control system can control the operation of the fabricating components. The control system bases its control of the fabricating components, at least in part, on feed forward control information generated by a processor that analyzes scatterometry based reticle fabrication data gathered from measurement components. The scatterometry data is compared to data stored in a signature data store that facilitates analyzing gathered scatterometry signatures to produce feed forward control information that can be employed to manipulate subsequent reticle fabrication processes and/or apparatus.
摘要:
A system and methodology are disclosed for monitoring and controlling a semiconductor fabrication process. Measurements are taken in accordance with scatterometry based techniques of repeating in circuit structures that evolve on a wafer as the wafer undergoes the fabrication process. The measurements can be employed to generate feed forward and/or feedback control data that can utilized to selectively adjust one or more fabrication components and/or operating parameters associated therewith to adapt the fabrication process. Additionally, the measurements can be employed in determining whether to discard the wafer or portions thereof based on a cost benefit analysis, for example. Directly measuring in circuit structures mitigates sacrificing valuable chip real estate as test grating structures may not need to be formed within the wafer, and also facilitates control over the elements that actually affect resulting chip performance.
摘要:
A system comprised of a plurality of fabs that are operatively coupled and share data from a common framework for correlating production. The fabs can be coupled via Internet, cellular, optical, landline, microwave and satellite communication means and the like. Data can be transferred to and/or received from a central, integrated correlating entity or from several distributed correlating entities. The fabs send and receive correlating data that relates to production information such as tolerances, critical dimensions, geometry and the like. The correlating entity(s) has the capability to increase production by performing probabilistic computations on the received correlating data and utilizing the resulting information to maintain correlating parameters at remote locations. The computations performed can include such calculations as Bayesian inferencing and the like. The system inherently precludes the necessity for physically transporting parametric test entities between different fab or tooling locations.