Abstract:
The disclosure discloses a liquid crystal display panel, a method for fabricating the same and a display device, where the liquid crystal display panel includes an array substrate and an opposite substrate arranged opposed to the array substrate, wherein a transparent flexible conductive film is arranged on a side of the opposite substrate facing away from the array substrate.
Abstract:
The invention discloses a peeling liquid for a resist, which relates to an optical element and is used for removing the color resist and the protective layer on a color filter rapidly and efficiently. The peeling liquid for a color resist on a color filter comprises an alkali metal alkoxide with a mass percentage of 10-45%, an organic amine with a mass percentage of 10-30%, a surfactant with a mass percentage of 5-30%, a solvent with a mass percentage of 20-60%, and an alcohol with a mass percentage of 1-55% in terms of the peeling liquid for a resist with a mass percentage of 100%. The peeling liquid for a resist in invention is used for removing the color resist and the protective layer of the substandard product in a color filter.
Abstract:
The present disclosure provides a thin-film transistor having a plurality of carbon nanotubes in its active layer, its manufacturing method, and an array substrate. The manufacturing method as such comprises: forming an insulating layer to at least substantially cover a channel region of the active layer between a source electrode and a drain electrode of the thin-film transistor, wherein the insulating layer is configured to substantially insulate from an environment, and have substantially little influence on, the plurality of carbon nanotubes in the active layer.
Abstract:
A method for fabricating a COA array substrate, an array substrate and a display device are provided. The COA array substrate includes a photoresist layer disposed on a protection layer, wherein a color filter receiving hole is formed in the photoresist layer, and a color filter layer is formed in the color filter receiving hole, an entire surface of the photoresist layer is flushed with an entire surface of the color filter layer such that the photoresist layer functions as the planarized layer.
Abstract:
Embodiments of the disclosure provide a manufacturing method of a TFT array substrate, a TFT array substrate and a display device. The method comprises steps of: S1. forming a thin film transistor on a base substrate; S2. forming a passivation layer thin film on the base substrate after the step S1; S3. forming a passivation layer via hole and a light-shielding pattern on the base substrate after the step S2; and S4. forming a color filter layer and a pixel electrode on the base substrate after the step S3. The pixel electrode is electrically connected to a drain electrode of the thin film transistor through the passivation layer via hole, and the color filter layer is in correspondence with a position of the pixel electrode.
Abstract:
A fabrication method of a substrate, relates to a field of a display technology, which can avoid a deviation between a line width of a black matrix or a color filter layer actually fabricated and a preset line width, so that the black matrix can just completely shield thin film transistor, a data line and a gate line, and meanwhile the black matrix or the color filter layer more refined are obtained, which improves the display effect of the liquid crystal display. The fabrication method of the substrate comprises: forming a to-be-treated layer, forming a light-shielding layer on the to-be-treated layer, and forming a pattern of the light-shielding layer by a patterning process, wherein the light-shielding layer is made of metal; performing a patterning process on the to-be-treated layer by using the pattern of the light-shielding layer as a mask; and removing the light-shielding layer.
Abstract:
A thin film transistor, a method for manufacturing a thin film transistor, an array substrate and a display apparatus are provided. The thin film transistor includes a gate, a source, a drain and an active layer provided on a base substrate, both the source and the drain are electrically connected to the active layer, at least one of the source, the drain and the gate is a light-absorbing electrode, which comprises an electrode body and a light-absorbing layer, and the light-absorbing layer is arranged at a side of the electrode body facing towards the active layer.
Abstract:
A protective plate and a preparation method thereof, a display panel and a display device. The protective plate comprises a translucent substrate, wherein a white shading frame, for covering a circuit layer, is provided in a periphery of the translucent substrate. In this way, it is possible to make a non-display region of the display panel be white.
Abstract:
The present invention relates to the field of display technology, and particularly to a double-sided touch display device which comprises a touch feedback electrode, a first touch receiving electrode and a second touch receiving electrode, wherein the first touch receiving electrode and the second touch receiving electrode are provided at both sides of the touch feedback electrode, respectively. The double-sided touch display device achieve functions of both double-sided touch and transparent display, and has a simple structure and low production cost.
Abstract:
The present disclosure provides a carbon nanotube thin film transistor (CNT-TFT) and its manufacturing method. The carbon nanotube thin film transistor includes a source electrode, a drain electrode, a channel region, a plurality of protrusions, and a carbon nanotube layer. The channel region is between the source electrode and the drain electrode. The plurality of protrusions are at, and extend in a length direction of, the channel region. The carbon nanotube layer is disposed over the plurality of protrusions, and comprises a plurality of carbon nanotubes.