摘要:
An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to selectively attract ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
摘要:
A plasma ion implantation system includes a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, the system includes a plasma monitor configured to measure ion mass and energy in the process chamber and an analyzer configured to determine an operating condition of the system in response to the measured mass and energy. In another aspect, the system includes a data acquisition unit configured to acquire samples of the implant pulses and analyzer configured to determine an operating condition of the system based on the acquired samples.
摘要:
A plasma ion implantation system includes a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, the system includes a plasma monitor configured to measure ion mass and energy in the process chamber and an analyzer configured to determine an operating condition of the system in response to the measured mass and energy. In another aspect, the system includes a data acquisition unit configured to acquire samples of the implant pulses and analyzer configured to determine an operating condition of the system based on the acquired samples.
摘要:
A method to provide a dopant profile adjustment solution in plasma doping systems for meeting both concentration and junction depth requirements. Bias ramping and bias ramp rate adjusting may be performed to achieve a desired dopant profile so that surface peak dopant profiles and retrograde dopant profiles are realized. The method may include an amorphization step in one embodiment.
摘要:
A method to provide a dopant profile adjustment solution in plasma doping systems for meeting both concentration and junction depth requirements. Bias ramping and bias ramp rate adjusting may be performed to achieve a desired dopant profile so that surface peak dopant profiles and retrograde dopant profiles are realized. The method may include an amorphization step in one embodiment.
摘要:
A method of plasma doping includes generating a plasma comprising dopant ions proximate to a platen supporting a substrate in a plasma chamber. The platen is biased with a bias voltage waveform having a negative potential that attracts ions in the plasma to the substrate for plasma doping. At least one sensor measuring data related to charging conditions favorable for forming an electrical discharge is monitored. At least one plasma process parameter is modified in response to the measured data, thereby reducing a probability of forming an electrical discharge.