摘要:
An end effector assembly for use with an electrosurgical instrument is provided. The end effector assembly includes a pair of opposing jaw members configured to grasp tissue therebetween, at least one jaw member adapted to connect to a source of electrosurgical energy to seal tissue disposed between jaw members during a sealing process. At least one of the jaw members includes an activator configured to selectively impart mechanical perturbations to the at least one jaw member during the sealing process.
摘要:
Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
摘要:
Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
摘要:
Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
摘要:
An energy-based tissue-sealing system and method provide higher sealing quality by measuring and using optical feedback parameters that are directly correlated to structural changes of tissue. The tissue-sealing system includes a sealing energy source, an instrument having a mechanism for grasping and deforming the tissue and for delivering sealing energy to the tissue, a light source, optical sensors, and a controller for controlling parameters of the sealing energy generated by the sealing energy source based upon the optical parameters of the tissue structure sensed by the optical sensors. At the beginning of a sealing procedure, the controller may monitor an initial optical parameter of the tissue and select a target trajectory of tissue optical parameters based on the initial optical parameter. During the sealing procedure, the controller monitors at least one optical parameter of the tissue structure and controls at least one parameter of the sealing energy based on the at least one optical parameter.
摘要:
A surgical system and corresponding methods for identifying tissue or vessels and assessing their conditions includes a probing signal source for applying a probing signal to the tissue and a response signal monitor for monitoring a response signal that varies according to the level of blood circulation in the tissue or vessels. The response signal monitor monitors the response signal over an interval equal to or longer than an interval between two successive cardiac contractions. The surgical system includes a microprocessor that analyzes the amplitude and/or phase of the response signal to determine the level of blood circulation in the tissue or in different portions of the tissue, and determines a tissue parameter based upon the level of blood circulation. The surgical system may monitor a cardiac signal related to cardiac contractions and correlate the response signal and the cardiac signal to determine a level of blood circulation in the tissue.
摘要:
Methods and apparatus for optically recognizing tissue parameters during an energy-based tissue-sealing procedure involve grasping tissue with a tissue-sealing instrument, illuminating the grasped tissue or tissue adjacent to the grasped tissue with light, analyzing the light that is transmitted, scattered, or reflected by the tissue, and recognizing the tissue based on the result of analyzing the light. The wavelength of the light may be selected so that a vessel is sufficiently recognizable in tissue containing the vessel. A marker may also be introduced into fluid flowing in the vessel to increase the contrast between the vessel and tissue containing the vessel. Analyzing the light includes analyzing the spatial and spectral distribution of light. Analyzing the light may also include forming the light into an image of the illuminated tissue. The image of the illuminated tissue may be projected onto the eyes of a surgeon or sensed by a matrix of light detectors disposed on a jaw member of the tissue-sealing instrument and transmitted to a display.
摘要:
The present disclosure is directed to a tissue clip for use in electrosurgical procedures. The tissue clip includes an arm having a first electrode formed thereon. The tissue clip also includes a body pivotally coupled to the arm. The body includes a power source and a second electrode. The arm is moveable from a first position relative to the body for approximating tissue and a second position closer to the body for grasping tissue therebetween.
摘要:
An end effector assembly for use with an electrosurgical instrument is provided. The end effector assembly includes a pair of opposing jaw members configured to grasp tissue therebetween. The assembly also includes a thread-like member having a first end coupled to at least one jaw member and a drive member coupled to a second end of the thread-like member. The drive member is configured to position the thread-like member between a first position and a second position, wherein the thread-like member cuts tissue when positioned in the second position.
摘要:
Methods and apparatus for optically recognizing tissue parameters during an energy-based tissue-sealing procedure involve grasping tissue with a tissue-sealing instrument, illuminating the grasped tissue or tissue adjacent to the grasped tissue with light, analyzing the light that is transmitted, scattered, or reflected by the tissue, and recognizing the tissue based on the result of analyzing the light. The wavelength of the light may be selected so that a vessel is sufficiently recognizable in tissue containing the vessel. A marker may also be introduced into fluid flowing in the vessel to increase the contrast between the vessel and tissue containing the vessel. Analyzing the light includes analyzing the spatial and spectral distribution of light. Analyzing the light may also include forming the light into an image of the illuminated tissue. The image of the illuminated tissue may be projected onto the eyes of a surgeon or sensed by a matrix of light detectors disposed on a jaw member of the tissue-sealing instrument and transmitted to a display.