摘要:
An asymmetric hetero-structure FET and method of manufacture is provided. The structure includes a semiconductor substrate and an epitaxially grown semiconductor layer on the semiconductor substrate. The epitaxially grown semiconductor layer includes an alloy having a band structure and thickness that confines inversion carriers in a channel region, and a thicker portion extending deeper into the semiconductor structure at a doped edge to avoid confinement of the inversion carriers at the doped edge.
摘要:
A circuit for testing a floating body field-effect transistor (FET), and a related method, are provided. Embodiments of this invention include a circuit including a contacted-body FET structure that can be operated in a floating body mode or a body-contacted mode, and a passgate FET. A body of the contacted-body FET structure is connected to the drain of the passgate FET. Voltage can be applied to the passgate FET to either allow or restrict current flow through the passgate FET, to operate the contacted-body FET structure in body contacted mode or floating body mode. Data can be taken in each mode and compared to extract a floating body voltage.
摘要:
A plurality of diode/resistor devices are formed within an integrated circuit structure using manufacturing equipment operatively connected to a computerized machine. Each of the diode/resistor devices comprises a diode device and a resistor device integrated into a single structure. The resistance of each of the diode/resistor devices is measured during testing of the integrated circuit structure using testing equipment operatively connected to the computerized machine. The current through each of the diode/resistor devices is also measured during testing of the integrated circuit structure using the testing equipment. Then, response curves for the resistance and the current are computed as a function of variations of characteristics of transistor devices within the integrated circuit structure and/or variations of manufacturing processes of the transistor devices within the integrated circuit structure.
摘要:
A plurality of diode/resistor devices are formed within an integrated circuit structure using manufacturing equipment operatively connected to a computerized machine. Each of the diode/resistor devices comprises a diode device and a resistor device integrated into a single structure. The resistance of each of the diode/resistor devices is measured during testing of the integrated circuit structure using testing equipment operatively connected to the computerized machine. The current through each of the diode/resistor devices is also measured during testing of the integrated circuit structure using the testing equipment. Then, response curves for the resistance and the current are computed as a function of variations of characteristics of transistor devices within the integrated circuit structure and/or variations of manufacturing processes of the transistor devices within the integrated circuit structure.
摘要:
Disclosed are embodiments of a semiconductor structure that incorporates multiple nitride layers stacked between the center region of a device and a blanket oxide layer. These nitride layers are more thermally conductive than the blanket oxide layer and, thus provide improved heat dissipation away from the device. Also disclosed are embodiments of a method of forming such a semiconductor structure in conjunction with the formation of any of the following nitride layers during standard processing of other devices: a nitride hardmask layer (OP layer), a “sacrificial” nitride layer (SMT layer), a tensile nitride layer (WN layer) and/or a compressive nitride layer (WP layer). Optionally, the embodiments also incorporate incomplete contacts that extend through the blanket oxide layer into one or more of the nitride layers without contacting the device in order to further improve heat dissipation.
摘要:
A method of forming a semiconductor structure includes forming at least one trench in an insulator layer formed on a substrate. A distance between a bottom edge of the at least one trench and a top surface of a substrate is shorter than a distance between an uppermost surface of the insulator layer and the top surface of the substrate. The method also includes: forming a resistor on the insulator layer and extending into the at least one trench; forming a first contact in contact with the resistor; and forming a second contact in contact with the resistor such that current is configured to flow from the first contact to the second contact through a central portion of the resistor.
摘要:
A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
摘要:
A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
摘要:
A semiconductor-on-insulator transistor device includes a source region, a drain region, a body region, and a source-side lateral bipolar transistor. The source region has a first conductivity type. The body region has a second conductivity type and is positioned between the source region and the drain region. The source-side lateral bipolar transistor includes a base, a collector, and an emitter. A silicide region connects the base to the collector. The emitter is the body region. The collector has the second conductivity type, and the base is the source region and is positioned between the emitter and the collector.
摘要:
A semiconductor-on-insulator transistor device includes a source region, a drain region, a body region, and a source-side lateral bipolar transistor. The source region has a first conductivity type. The body region has a second conductivity type and is positioned between the source region and the drain region. The source-side lateral bipolar transistor includes a base, a collector, and an emitter. A silicide region connects the base to the collector. The emitter is the body region. The collector has the second conductivity type, and the base is the source region and is positioned between the emitter and the collector.