Abstract:
A method of reacting a toluenesulfonyl-terminated polyoxyethylene compound having the formula CH3—C6H4—SO2—(O—CH2—CH2)n—O—R1 with an ammonium salt having the formula NR24X to form a compound having the formula X—CH2—CH2—(O—CH2—CH2)n-1—R3. The value n is a positive integer. X is a halogen, cyanide, cyanate, thiocyanate, or azide. R1 is a terminating group. Each R2 is hydrogen or an alkyl group. —R3 is —O—R1 or —X.
Abstract:
A molecular concentrator comprising a thermal ratchet for driving molecules from one place to another. A plurality of conducting wires are arranged on or suspended above a substrate. Each of the wires is configured to strongly sorb a vapor of interest when the wire is at room temperature and to rapidly desorb the vapor when the wire is at an elevated temperature. By selectively heating and cooling the wires, vapor molecules incident on the wires can be directed in a desired manner, e.g., from the wires closest to the vapor-containing environment to a sensor.
Abstract:
The compound is a silane surface treatment agent and is useful for modifying the surfaces of silicon oxide and other metal oxides with hexafluorodimethyl carbinol functional groups. Additionally provided is a surface treatment procedure that effectively bonds it and other alkoxysilanes via homogeneous and heterogeneous amine catalysis onto metal oxide surfaces.
Abstract:
The compound is a silane surface treatment agent and is useful for modifying the surfaces of silicon oxide and other metal oxides with hexafluorodimethyl carbinol functional groups. Additionally provided is a surface treatment procedure that effectively bonds it and other alkoxysilanes via homogeneous and heterogeneous amine catalysis onto metal oxide surfaces.
Abstract:
A coating having an adhesive hydrophilic polymer and an amphiphilic additive. The amphiphilic additive has a hydrophilic chain, a biocidal functional group bonded to the hydrophilic chain, and a hydrophobic moiety bonded to the hydrophilic chain or to the biocidal functional group. A method of forming a biocidal surface by providing an article, and coating the article with the above coating. A compound having the formula: Y—(O—CH2—CH2)n—R—(CH2)m—CH3. Y is CH3 or H. R is X is a halogen, and m and n are independently selected positive integers.
Abstract:
An optical limiter structure which includes a limiter material preferably dissolved in a host. The limiter material is selected from substituted and unsubstituted phthalocyanines, naphthalocyanines, porphyrins, salts of these materials and mixtures thereof, whereas the host is selected from any material which can dissolve the limiter material to at least the extent of 0.1% by weight.
Abstract:
A metallization is coated with a network polymer. The network polymer may be either a cross-linked polyfluorinated polyallylether-polyhydromethylsiloxane copolymer or a network polymer formed from cross-linked fluoromethylene cyanate ester monomers. These polymer networks are resistant to the diffusion of a metallization, such as copper, therethrough.
Abstract:
A hexafluorodimethylcarbinol terminated compound, method of making it, and a composition of matter are disclosed. The compound may have the formula (CF3)2C(OH)-L-M-R. The substructure L may be selected from an optionally substituted propenylene group (—CH2CH═CH—) and trimethylene group (—CH2CH2CH2—). The substructure M may be selected from a substituted or unsubstituted methylene chain, a substituted or unsubstituted oxyalkylene chain, and a silicon-containing chain or combination thereof. In one embodiment, M may be selected from —(CH2)n—, —(OCH2CH2)m—, and —(Si(CH3)2O)p—Si(CH3)2—(CH2)q—, wherein n is at least 1, e.g., n is up to 10, m can be at least 1, e.g., m is up to 10, p can be 0 and in one embodiment is from 1 to 10, and wherein q can be 1 and in one embodiment is from 1 to 12. The substructure R represents one of a halogen, —SH, —SZ, —S—S-M-L-C(CF3)2(OH), wherein Z represents a thiol protecting group.
Abstract:
High concentrations of dye may be prepared in combination with thermoplastic polymers and used in optical polymers as monomeric and dimeric molecular solutions. The method of preparing high concentration levels allows the control over the aggregation of dye molecules that is required to maintain effective nonlinear operation. The present invention is applicable to many systems and is essential to the successful production of working optical limiting devices and other optically transparent polymeric devices, as well as other photonic applications, such as nonlinear optics.