摘要:
The present invention provides a cardiac vascular occlusion system which includes inner and outer guide catheters and an occluding member disposed on the inner catheter. The occluding member may be deployed from a compressed to an expanded position to limit retrograde blood flow in a body lumen. The occluding member may be used when injecting a contrast agent into the body lumen.
摘要:
A device and method for accessing a pericardial space of the heart includes a shaft having a cavity at a distal end, a suction lumen terminating in a distal port within the cavity and a hollow needle having a distal tip extending into the cavity. The cavity may be a recess in the shaft into which the distal tip of the needle fixedly protrudes. In other embodiments, the cavity is formed by an inflatable member positioned at the distal end of the shaft and the needle is slidable relative to the shaft. Suction is applied at the cavity to draw a pericardial bleb. The needle pierces the pericardial bleb for accessing the pericardial space and also facilitates delivery of payloads into the pericardial space.
摘要:
A method of accessing lateral branch veins of the coronary sinus with a pacing lead and guide catheter assembly. The guide catheter has an open lumen extending therethrough and a distal end provided with a pre-formed guide curve, while the pacing lead has a distal end provided with a first curve and a second curve extending proximally from the first curve. The guide catheter is inserted into an access vessel of the heart and advanced along the access vessel to the coronary sinus. The pacing lead is inserted into the guide catheter lumen and advanced distally through the guide catheter lumen. The pacing lead is rotated by advancing the second curve of the pacing lead through the guide curve to align the first curve with a pre-determined plane. The first curve of the pacing lead into one of the lateral branch veins of the coronary sinus.
摘要:
Catheter or guidewire mounted automatic vessel occlusion and fluid dispersion devices that expand to occlude or partially occlude a vessel when a fluid is flowing in the catheter or guidewire, and that automatically collapse when fluid flow is stopped. Each occlusion device has an elastic skeleton covered with a flexible cover coupled thereto and may have a hole(s) or openings in its distal or proximal end thereof to allow controlled flow through the desired end of the occlusion device. The fluid may be a flush fluid for enabling or improving the performance of imaging devices and image enhancing fluids, of treatment fluids for localized treatment of a vessel or tissues in communication with the vessel and/or of the transmission of energy to the vessel wall and adjacent tissues. Various embodiments are disclosed, including embodiments having provisions for the rapid expansion and collapse of the occlusion device or alternately, for the rapid expansion of the device, followed by much slower collapse of the device.
摘要:
A guide catheter assembly for accessing lateral branch veins of the coronary sinus includes a guide catheter and a pacing lead. The guide catheter has a central lumen therethrough, a proximal end and a distal end pre-formed with a guide curve. The pacing lead is slidably receivable within the guide catheter lumen. The pacing lead has a proximal end and a distal end formed with a first curve and a second curve extending proximally from the first curve. The second curve is adapted to mate with the guide curve to direct the first curve into a selected branch vein of the coronary sinus. The second curve may be pre-formed in the pacing lead, or may be imparted to the pacing lead via a stylet or inner catheter.
摘要:
Catheter or guidewire mounted automatic vessel occlusion and fluid dispersion devices that expand to occlude or partially occlude a vessel when a fluid is flowing in the catheter or guidewire, and that automatically collapse when fluid flow is stopped. Each occlusion device has an elastic skeleton covered with a flexible cover coupled thereto and may have a hole(s) or openings in its distal or proximal end thereof to allow controlled flow through the desired end of the occlusion device. The fluid may be a flush fluid for enabling or improving the performance of imaging devices and image enhancing fluids, of treatment fluids for localized treatment of a vessel or tissues in communication with the vessel and/or of the transmission of energy to the vessel wall and adjacent tissues. Various embodiments are disclosed.
摘要:
A summing-tracking quantizer additively combines multiple feed-forward outputs of cascaded integrator stages of a sigma-delta analog-to-digital converter with a scaled sampled analog signal, and a delayed scaled analog input signal. The summing tracking quantizer compensates for loop delay within a sigma-delta analog-to-digital converter. A loop delay compensation digital-to-analog converter for a sigma-delta analog-to-digital converter is merged with the voltage reference generator within the summing-tracking quantizer. The summing tracking quantizer selects reference voltages from the voltage reference generator based on a previous digital output code. The summing-tracking quantizer has a matrix switch that receives the previous digital output code and selects the reference voltage for applying to comparators for determining a differential quantization code that is additively combined to the previous digital output code to determine the present digital output code.
摘要:
An audio device (200) includes a first and second ICs (210) and (250) and a substrate (205). The first IC includes a sigma-delta, A/D converter (218) operable to convert an analog signal (234) into a pulse density modulated signal (236). A pulse density width modulator encoder (222) is operable to encode the PDM signal into a PDWM signal (244). The PDWM has short and long pulse widths defining first and second bit levels. The leading edges of each pulse bounds each pulse period. The second IC (250) includes a means (254) to receive the PDWM signal, an edge detector (304) operable to detect the leading pulse edges of the PDWM signal, a time-averaging circuit (308) operable to calculate each pulse period from the leading pulse edges and to generate a sample pulse (120) at near the midpoint of each pulse period, and a latch (312) operable to sample and hold the PDWM signal at the sample pulse to decode a PDM signal (278). The substrate is operable to support the first and second ICs and to conduct the PDWM signal between the first and second ICs.
摘要:
An accurate high current mirror circuit produces a mirrored current that matches an input current to produce an accuracy at the output of a subsequent stage of amplification of greater than 0.01%. A plurality of transistor devices are arranged in a symmetrical configuration and divided into two groups. The transistors in each of the two groups are connected in parallel to produce a high mirror current from a high input current. A distribution of a source voltage produces the same source voltage at each of the plurality of transistors. An input current metallization and a mirror current metallization are formed within the symmetrical configuration to have a same value of impedance. A plurality of P-channel transistors within the current mirror circuit control a voltage of a point on the input metallization to be the same as a reference voltage, thus causing the mirror current to be referenced around the reference voltage.
摘要:
An audio device (200) includes a first and second ICs (210) and (250) and a substrate (205). The first IC includes a sigma-delta, A/D converter (218) operable to convert an analog signal (234) into a pulse density modulated signal (236). A pulse density width modulator encoder (222) is operable to encode the PDM signal into a PDWM signal (244). The PDWM has short and long pulse widths defining first and second bit levels. The leading edges of each pulse bounds each pulse period. The second IC (250) includes a means (254) to receive the PDWM signal, an edge detector (304) operable to detect the leading pulse edges of the PDWM signal, a time-averaging circuit (308) operable to calculate each pulse period from the leading pulse edges and to generate a sample pulse (120) at near the midpoint of each pulse period, and a latch (312) operable to sample and hold the PDWM signal at the sample pulse to decode a PDM signal (278). The substrate is operable to support the first and second ICs and to conduct the PDWM signal between the first and second ICs.