摘要:
The average propylene cycle selectivity of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the hydrocarbon synthesis portion of the OTP flow scheme in lieu of the fixed bed technology of the prior art; 2) a hydrothermally stabilized and dual-functional catalyst system comprising a molecular sieve having dual-function capability dispersed in a phosphorus-modified alumina matrix containing labile phosphorus and/or aluminum anions; and 3) a catalyst on-stream cycle time of 400 hours or less. These provisions stabilize the catalyst against hydrothermal deactivation and hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield near or at essentially start-of-cycle levels.
摘要:
A method of converting methanol feedstock to olefins is provided and includes contacting the methanol feedstock in a first conversion zone with a catalyst at reaction conditions effective to produce a first reaction zone effluent comprising DME, unreacted methanol and water, and recycling at least a portion of an overhead vapor product to the first conversion zone and/or to the second conversion zone.
摘要:
A process and apparatus cools a heat exchange type reaction zone by passing the incoming reactants through heat exchange channels in heat exchange relationship with the reaction zone. The invention simplifies the operation and construction of the heat exchanging type reaction zone by directly communicating reaction channels that contain the reaction with the heating channels that heat reactant across an open manifold located at the end of the channels. Additional reactants, cooling fluids, or other diluents may enter the process directly through the manifold space to permit further temperature control of the reaction zone. The invention promotes better heat transfer efficiency than tube and shell heat transfer arrangements that have been used for similar purposes. The narrow channels are preferably defined by corrugated plates. The reaction channels will contain a catalyst for the promotion of the primary reaction.
摘要:
An etherification process combines an alkylation zone with a skeletal olefin isomerization zone in an arrangement that rejects isoalkanes and normal alkanes with only minor loss of valuable olefin isomers. The invention also provides a balanced feed to an alkylation zone for the production of high octane gasoline components. This invention can be used to provide ethers and gasoline boiling range alkylates from either C.sub.4 or C.sub.5 feedstocks. The invention fully utilizes all olefin isomers improve octane and vapor pressure charactristics of the gasoline components.
摘要:
The present invention provides an integrated process for the production of propylene oxide from an alternate feedstream such as synthesis gas. In the process, propylene oxide is produced from a feedstream comprising hydrogen and a carbon oxide. A portion of the feedstream is passed to an oxygenate production zone to produce an oxygenate stream comprising methanol and dimethyl ether, and the oxygenate stream is passed to an olefin production zone containing a metal aluminophosphate catalyst to produce a propylene stream. The propylene stream is epoxidized with hydrogen peroxide which has been produced from hydrogen separated from a portion of the feedstream. The spent water stream produced by the epoxidation reaction is treated to remove heavy components and returned to the hydrogen peroxide production zone. The return of the unreacted propylene from the epoxidation reaction zone for its subsequent recovery and recycle permits a less complicated, lower energy propylene separation. The recycling of spent water from the epoxidation reaction zone and the removal of heavy compounds eliminates a low value water stream and the recovery of heavy hydrocarbons therefrom produces a valuable secondary product.
摘要:
The present invention relates to a process for the production of light weight olefins comprising olefins having from 2 to 3 carbon atoms per molecule from an oxygenate feedstock. The process comprises passing the oxygenate feedstock to an oxygenate conversion zone containing a metal aluminophosphate catalyst to produce a light weight olefin stream. A propylene stream and/or mixed butylene is fractionated from said light weight olefin stream and a medium weight C4 to C7 stream is cracked in a separate olefin cracking reactor to enhance the yield of ethylene and propylene products.
摘要:
The present invention relates to a process for the production of light weight olefins comprising olefins having from 2 to 3 carbon atoms per molecule from an oxygenate feedstock. The process comprises passing the oxygenate feedstock to an oxygenate conversion zone containing a metal alumino phosphate catalyst to produce a light weight olefin stream. A propylene stream and/or mixed butylene is fractionated from said light weight olefin stream and a medium weight C4 to C7 stream is cracked in a separate olefin cracking reactor to enhance the yield of ethylene and propylene products.
摘要翻译:本发明涉及一种生产轻质烯烃的方法,其包含每分子含有2-3个碳原子的含氧原料。 该方法包括使含氧化合物原料通入含有金属磷酸铝催化剂的含氧化合物转化区以产生轻质烯烃流。 将丙烯料流和/或混合的丁烯从所述轻质烯烃料流中分馏,并将中等重量C 4至C 7 H 2流在单独的烯烃裂解反应器中裂化以增强 乙烯和丙烯产品的产率。
摘要:
A multistep hydrocarbon conversion process for the production of ethers including methyl tertiary butyl ether (MTBE) from light paraffins and alcohols is disclosed. A mixture of C.sub.4 isoparaffins, normal paraffins, an etherification recycle and butane isomerization effluent enter a deisobutanizer column. Normal paraffins withdrawn from the fractionator are isomerized and returned to the fractionator, and isoparaffins are withdrawn from the fractionator and dehydrogenated. The resulting olefins enter an etherification zone for reaction of isobutene with a C.sub.2 -C.sub.5 alcohol. Unreacted paraffins and olefins comprise a portion of the etherification effluent entering the deisobutanizer. After separation for recovery of the ether product, unreacted paraffins and olefins are passed through a dehydrogenation zone for saturation of the olefins and then returned to the deisobutanizer column. Normal butanes are withdrawn as a sidecut from the deisobutanizer. The sidecut passes to an isomerization zone and a mixture of isobutane and normal butane is recycled to the deisobutanizer. In a highly preferred embodiment, spent catalyst from the isomerization zone fulfills the catalyst requirement of the dehydrogenation zone.
摘要:
A hydrocarbon conversion process is disclosed which may be used to produce high purity isobutylene and/or tertiary butyl alcohol and methyl tertiary butyl ether. A mixed C.sub.4 feed stream is divided into two portions with a first portion being passed through a hydration zone to produce the tertiary butyl alcohol. The remaining hydrocarbons withdrawn from the hydration zone and the second portion of the feed stream are changed to an etherification zone. The unconverted hydrocarbons exiting the etherification zone may be subjected to isomerization and/or dehydrogenation to produce additional isobutylene. The high purity isobutylene is obtained by dehydrating the tertiary butyl alcohol.
摘要:
A method of converting methanol feedstock to olefins is provided and includes contacting the methanol feedstock in a first conversion zone with a catalyst at reaction conditions effective to produce a first reaction zone effluent comprising DME, unreacted methanol and water; cooling the first reaction zone effluent to separate DME as a first vapor product from the first reaction zone effluent and to form a first aqueous stream comprising water, unreacted methanol, soluble DME and oxygenates; contacting the first vapor product in a second conversion zone with a catalyst at reaction conditions effective to produce a second reaction zone effluent comprising light olefins, unreacted DME, water and oxygenates; cooling the second reaction zone effluent to separate the light olefins and the unreacted DME as a second vapor product from the second reaction zone effluent and to form a second aqueous stream comprising water, soluble DME and oxygenates; compressing the unreacted DME and the light olefins; separating DME from the light olefins with an aqueous absorbing liquid to produce substantially DME free olefins product and a third aqueous stream comprising the absorbing liquid, absorbed DME, soluble oxygenates and hydrocarbons; feeding at least a portion of the first, second and/or third aqueous streams into a stripper and stripping out and recovering the methanol, DME, soluble oxygenates and hydrocarbons as an overhead vapor product and a fourth aqueous stream comprising substantially clean water as a bottoms liquid product; and recycling at least a portion of the overhead vapor product to the first conversion zone and/or to the second conversion zone.