摘要:
A pulling apparatus and a method with which especially heavy crystals (5) can be pulled using the Czochralski method utilizing the pulling apparatus. For this purpose the neck (4) of the crystal (5) has an enlargement (10) beneath which extends the support device. This device includes latches (7), which are moved from a resting position into an operating position in which the latches (7) extend beneath the enlargement (10). Each latch (7) is supported on the base body such that it is swivellable about a pivot axis (8) and can assume two stable positions, namely the resting position and the operating position. Each of these positions is defined by a stop on the base body. When the latch rests on the one stop, its center of gravity, viewed from the neck (4), is located on the other side of the pivot axis (8). When the latch rests on the other stop, the center of gravity is located on this side of the pivot axis (8). The actuation of the latches (7) takes place with actuation means disposed stationarily in the apparatus.
摘要:
A pulling apparatus and a method with which especially heavy crystals (5) can be pulled using the Czochralski method utilizing the pulling apparatus. For this purpose the neck (4) of the crystal (5) has an enlargement (10) beneath which extends the support device. This device includes latches (7), which are moved from a resting position into an operating position in which the latches (7) extend beneath the enlargement (10). Each latch (7) is supported on the base body such that it is swivellable about a pivot axis (8) and can assume two stable positions, namely the resting position and the operating position. Each of these positions is defined by a stop on the base body. When the latch rests on the one stop, its center of gravity, viewed from the neck (4), is located on the other side of the pivot axis (8). When the latch rests on the other stop, the center of gravity is located on this side of the pivot axis (8). The actuation of the latches (7) takes place with actuation means disposed stationarily in the apparatus.
摘要:
A pulling apparatus and a method with which especially heavy crystals (5) can be pulled using the Czochralski method utilizing the pulling apparatus. For this purpose the neck (4) of the crystal (5) has an enlargement (10) beneath which extends the support device. This device includes latches (7), which are moved from a resting position into an operating position in which the latches (7) extend beneath the enlargement (10). Each latch (7) is supported on the base body such that it is swivellable about a pivot axis (8) and can assume two stable positions, namely the resting position and the operating position. Each of these positions is defined by a stop on the base body. When the latch rests on the one stop, its center of gravity, viewed from the neck (4), is located on the other side of the pivot axis (8). When the latch rests on the other stop, the center of gravity is located on this side of the pivot axis (8). The actuation of the latches (7) takes place with actuation means disposed stationarily in the apparatus.
摘要:
A pulling apparatus and a method with which especially heavy crystals (5) can be pulled using the Czochralski method utilizing the pulling apparatus. For this purpose the neck (4) of the crystal (5) has an enlargement (10) beneath which extends the support device. This device includes latches (7), which are moved from a resting position into an operating position in which the latches (7) extend beneath the enlargement (10). Each latch (7) is supported on the base body such that it is swivellable about a pivot axis (8) and can assume two stable positions, namely the resting position and the operating position. Each of these positions is defined by a stop on the base body. When the latch rests on the one stop, its center of gravity, viewed from the neck (4), is located on the other side of the pivot axis (8). When the latch rests on the other stop, the center of gravity is located on this side of the pivot axis (8). The actuation of the latches (7) takes place with actuation means disposed stationarily in the apparatus.
摘要:
A ring-shaped resistance heater for supplying heat to a growing single crystal, comprising:an upper and a lower ring, which are electrically conductively connected by means of a loop adjacent to a ring gap of the lower ring, such that the flow direction of electric current which is conducted through the rings is opposite in the rings;connecting elements which hold the upper and lower rings together at a distance; andcurrent leads for conducting electric current through the upper and lower rings.
摘要:
Monocrystalline semiconductor wafers have defect-reduced regions, the defect-reduced regions having a density of GOI-relevant defects within the range of 0/cm2 to 0.1/cm2 and occupy overall an areal proportion of 10% to 100% of the planar area of the semiconductor wafer, wherein the remaining regions of the semiconductor wafer have a significantly higher defect density than the defect-reduced regions. The wafers may be produced by a method for annealing GOI relevant defects in the wafer, by irradiating defined regions of a side of the semiconductor wafer by laser wherein each location is irradiated with a power density of 1 GW/m2 to 10 GW/m2 for at least 25 ms, wherein the laser emits radiation of a wavelength above the absorption edge of the wafer semiconductor material and wherein the temperature of the wafer rises by less than 20 K as a result of irradiation.
摘要翻译:单晶半导体晶片具有缺陷减少区域,缺陷减少区域具有在0 / cm 2至0.1 / cm 2范围内的GOI相关缺陷密度,以及 占据半导体晶片的平面面积的10%至100%的总面积比,其中半导体晶片的其余区域具有比缺陷减少区域明显更高的缺陷密度。 可以通过用于通过用激光照射半导体晶片的侧面的限定区域来对晶片中的GOI相关缺陷进行退火的方法来生产晶片,其中每个位置以1GW / m 2的功率密度照射, SUP>至10GW / m 2至少25ms,其中激光器发射波长在晶片半导体材料的吸收边缘上方的波长,并且其中晶片的温度升高小于20 K作为照射的结果。
摘要:
An apparatus for supporting a single crystal during Czochralski crystal pulling below a thickened crystal neck has lower bearing surface(s) with a central opening inscribable with a horizontal circle of diameter D1, centered on a vertical axis, the bearing surface(s) connected by connecting element(s) to minimally one securing element for securing to a crystal pulling lifting device, the connecting elements arranged to provide a clear-space in the region above the bearing surface(s) in which a circle of diameter D2 centered on the vertical axis (D2>D1) is inscribable over a length of the vertical axis. The unitary apparatus is useful for crystal ingot growth by immersion into the semiconductor melt prior to growth of a Dash neck and a thickening of the Dash neck. The apparatus is then raised to support the crystal by bearing against the bottom of the thickening.
摘要:
Monocrystalline semiconductor wafers have defect-reduced regions, the defect-reduced regions having a density of GOI-relevant defects within the range of 0/cm2 to 0.1/cm2 and occupy overall an areal proportion of 10% to 100% of the planar area of the semiconductor wafer, wherein the remaining regions of the semiconductor wafer have a significantly higher defect density than the defect-reduced regions. The wafers may be produced by a method for annealing GOI relevant defects in the wafer, by irradiating defined regions of a side of the semiconductor wafer by laser wherein each location is irradiated with a power density of 1 GW/m2 to 10 GW/m2 for at least 25 ms, wherein the laser emits radiation of a wavelength above the absorption edge of the wafer semiconductor material and wherein the temperature of the wafer rises by less than 20 K as a result of irradiation.
摘要翻译:单晶半导体晶片具有缺陷减少区域,缺陷区域具有在0 / cm 2至0.1 / cm 2范围内的GOI相关缺陷的密度,并且占整个面积比例为平面面积的10%至100% 半导体晶片,其中半导体晶片的剩余区域具有比缺陷减少区域显着更高的缺陷密度。 可以通过用于通过用激光照射半导体晶片的侧面的限定区域来对晶片中的GOI相关缺陷进行退火的方法来制造晶片,其中以1GW / m 2至10GW / m 2的功率密度照射每个位置, 至少25ms,其中所述激光器发射波长在所述晶片半导体材料的吸收边缘上方的波长的辐射,并且其中所述晶片的温度作为照射的结果升高小于20K。
摘要:
An apparatus for supporting a single crystal during Czochralski crystal pulling below a thickened crystal neck has lower bearing surface(s) with a central opening inscribable with a horizontal circle of diameter D1, centered on a vertical axis, the bearing surface(s) connected by connecting element(s) to minimally one securing element for securing to a crystal pulling lifting device, the connecting elements arranged to provide a clear-space in the region above the bearing surface(s) in which a circle of diameter D2 centered on the vertical axis (D2>D1) is inscribable over a length of the vertical axis. The unitary apparatus is useful for crystal ingot growth by immersion into the semiconductor melt prior to growth of a Dash neck and a thickening of the Dash neck. The apparatus is then raised to support the crystal by bearing against the bottom of the thickening.
摘要:
A ring-shaped resistance heater for supplying heat to a growing single crystal, contains an upper and a lower ring, which are electrically conductively connected by means of a loop adjacent to a ring gap of one ring, such that the flow direction of electric current which is conducted through the rings is opposite in the rings; connecting elements which hold the upper and lower rings together in a spaced apart relationship; and current leads for conducting electric current through the upper and lower rings.