摘要:
An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
摘要:
An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
摘要:
An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
摘要:
Methods of forming thermal oxide layers on a side wall of gate electrodes are disclosed. In particular, thermal oxide layers can be formed on a side wall of a gate electrode by forming a gate electrode on an integrated circuit substrate and forming a thermal oxide layer on a side wall of the gate electrode using a thermal oxidation process. A silicide layer can be formed on the gate electrode after the formation of the thermal oxide layer.
摘要:
Provided are a DRAM semiconductor device and a method for fabricating the DRAM semiconductor device. The method provides forming a silicon epitaxial layer on a source/drain region of a cell region and a peripheral circuit region using selective epitaxial growth (SEG), thereby forming a raised active region. In addition, in the DRAM semiconductor device, a metal silicide layer and a metal pad are formed on the silicon epitaxial layer in the source/drain region of the cell region. By doing this, the DRAM device is capable of forming a source/drain region as a shallow junction region, reducing the occurrence of leakage current and lowering the contact resistance with the source/drain region.
摘要:
Provided are a DRAM semiconductor device and a method for fabricating the DRAM semiconductor device. The method provides forming a silicon epitaxial layer on a source/drain region of a cell region and a peripheral circuit region using selective epitaxial growth (SEG), thereby forming a raised active region. In addition, in the DRAM semiconductor device, a metal silicide layer and a metal pad are formed on the silicon epitaxial layer in the source/drain region of the cell region. By doing this, the DRAM device is capable of forming a source/drain region as a shallow junction region, reducing the occurrence of leakage current and lowering the contact resistance with the source/drain region.
摘要:
A semiconductor memory device may include a semiconductor substrate with an active region extending in a first direction parallel with respect to a surface of the semiconductor substrate. A pillar may extend from the active region in a direction perpendicular with respect to the surface of the semiconductor substrate with the pillar including a channel region on a sidewall thereof. A gate insulating layer may surround a sidewall of the pillar, and a word line may extend in a second direction parallel with respect to the surface of the semiconductor substrate. Moreover, the first and second directions may be different, and the word line may surround the sidewall of the pillar so that the gate insulating layer is between the word line and the pillar. A contact plug may be electrically connected to the active region and spaced apart from the word line, and a bit line may be electrically connected to the active region through the contact plug with the plurality of bit lines extending in the first direction. Related methods are also discussed.
摘要:
A semiconductor memory device may include a semiconductor substrate with an active region extending in a first direction parallel with respect to a surface of the semiconductor substrate. A pillar may extend from the active region in a direction perpendicular with respect to the surface of the semiconductor substrate with the pillar including a channel region on a sidewall thereof. A gate insulating layer may surround a sidewall of the pillar, and a word line may extend in a second direction parallel with respect to the surface of the semiconductor substrate. Moreover, the first and second directions may be different, and the word line may surround the sidewall of the pillar so that the gate insulating layer is between the word line and the pillar. A contact plug may be electrically connected to the active region and spaced apart from the word line, and a bit line may be electrically connected to the active region through the contact plug with the plurality of bit lines extending in the first direction. Related methods are also discussed.
摘要:
Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.
摘要:
Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.