Abstract:
A cooling system for an injector tip for a diesel emission fluid (DEF) injection system is disclosed. The system uses a heat sink, such as a head for a regeneration system, to vaporize cooling fluid, in combination with a phase separation tank, to force cooling fluid backward through a cooling loop thereby allowing cooling of an injector tip following engine shutdown in a “hot” shutdown situation.
Abstract:
A valve assembly for an aftertreatment system is disclosed. The valve assembly includes a coolant conduit. The coolant conduit is configured to allow a coolant flow therethrough. The valve assembly also includes a valve element having a valve passage. The valve element is configured to control a reductant flow through the valve passage. The valve assembly further includes a coupling mechanism provided on the valve element. The coupling mechanism is configured to attach the valve element to the coolant conduit such that a temperature of the valve assembly is controlled based on the coolant flow.
Abstract:
A machine includes an engine having an exhaust system. A diesel exhaust fluid (DEF) injector provides metered amounts of DEF and includes a valve adapted to selectively open in response to a command. A controller associated with the engine and the DEF injector monitors operation of the DEF injector to detect a fault and activates a failure remediation cycle when the fault has been detected. The remediation cycle includes heating the exhaust gas to heat the DEF injector and melt any urea crystals that may be causing the fault, and activating the valve of the DEF injector to evacuate molten urea from within the DEF injector.
Abstract:
A fluid reservoir for accommodating a fluid reductant used in an SCR exhaust treatment process may include various styles or designs of bag filters to filter debris and contaminants from the reductant prior to being channeled out of the reservoir. To secure the bag filter to a header assembly accommodating the various inlet and outlet tubes, in one aspect, the header assembly may be associated with a base assembly designed to reduce leak paths allowing reductant to bypass the bag filter. In another aspect, the bag filter may be secured directly to the header assembly without the base assembly.
Abstract:
An injector for a diesel exhaust fluid (DEF) delivery system includes a first conduit extending along a longitudinal direction; a second conduit extending along the longitudinal direction and disposed within the first conduit; a nozzle tip having a side wall and an end wall; and a shell surrounding the first conduit and being spaced apart from the first conduit along a radial direction. The side wall has a thickness extending along the radial direction from an external surface of the nozzle tip to an inner surface of the second conduit. The end wall defines an outlet flow passage therethrough, and the outlet flow passage is in fluid communication with the first conduit and the second conduit via a chamber defined by an internal surface of the nozzle tip.
Abstract:
A header unit for a reductant tank is provided. The header unit includes a reductant draw conduit extending into an interior space of the reductant tank. The reductant draw conduit is configured to draw a reductant from the reductant tank. The reductant draw conduit includes at least one expansion opening provided along a length thereof. The header unit also includes a valve element coupled to the reductant draw conduit. The valve element includes a main body member defining a channel therethrough. The main body member circumferentially surrounds at least a portion of the reductant draw conduit corresponding to the at least one expansion opening. The main body member is made of an elastomeric material configured to accommodate an expansion thereof.
Abstract:
A cooling system for an injector tip for a diesel emission fluid (DEF) injection system is disclosed. The system uses a heat sink, such as a head for a regeneration system, to vaporize cooling fluid, in combination with a phase separation tank, to force cooling fluid backward through a cooling loop thereby allowing cooling of an injector tip following engine shutdown in a “hot” shutdown situation.
Abstract:
A fluid reservoir for accommodating a fluid reductant used in an SCR exhaust treatment process may include various styles or designs of bag filters to filter debris and contaminants from the reductant prior to being channeled out of the reservoir. To secure the bag filter to a header assembly accommodating the various inlet and outlet tubes, in one aspect, the bag filter is adapted to fit around a header boss descending from the header assembly and protruding into the reservoir volume. Various configurations for the bag filter can be utilized to secure the bag filter to the header boss in a manner that isolates the tubes of the header assembly from the remainder of the reservoir volume to prevent debris and the like from being unintentionally drawn out of the reservoir.
Abstract:
A mounting assembly for an injector is located in a curved portion of an exhaust line having an exhaust flow from an upstream end to a downstream end. The mounting assembly includes an indent extending at least partially into the exhaust line curved portion and disposed in the exhaust flow. The downstream wall has an interior surface oriented to substantially face the exhaust line downstream end. A recess extends from the downstream wall in a direction away from the exhaust line downstream end, and a recess aperture is formed in the recess and configured to fluidly communicate with the injector. The recess reduces the amount of exhaust heat reaching the injector tip.
Abstract:
A mounting assembly for an injector is located in a curved portion of an exhaust line having an exhaust flow from an upstream end to a downstream end. The mounting assembly includes an indent extending at least partially into the exhaust line curved portion and disposed in the exhaust flow. The downstream wall has an interior surface oriented to substantially face the exhaust line downstream end. A recess extends from the downstream wall in a direction away from the exhaust line downstream end, and a recess aperture is formed in the recess and configured to fluidly communicate with the injector. The recess reduces the amount of exhaust heat reaching the injector tip.