摘要:
The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
摘要:
The present invention relates to a method of making a crosslinked thermoset resin. One embodiment of this method comprises: (i) separating a plant-derived flour mixture into a protein fraction comprising proteins and a carbohydrate fraction comprising carbohydrates; (ii) subjecting the carbohydrate fraction to an oxidizing agent to yield oxidized carbohydrates comprising aldehyde functional groups or both aldehyde functional groups and carboxyl functional groups; and (iii) reacting the oxidized carbohydrates with the protein fraction under conditions effective to crosslink the proteins, thereby yielding a crosslinked thermoset resin. The present invention also relates to a crosslinked thermoset resin and composites, nanofiber membranes, and adhesives comprising the crosslinked thermoset resin.
摘要:
‘Green’ composites are fabricated using resins, such as soy-based resins, and reinforced with crystalline high strength bacterial cellulose (BC) fibers. Bacterial cellulose is produced by providing a bacterial cellulose-producing bacterium such as Acetobacter xylinum; providing an inexpensive bacteria nutritional medium; culturing the bacterium in the bacteria nutritional medium under conditions to produce bacterial cellulose; and isolating bacterial cellulose produced by cultured bacteria from the bacteria nutritional medium. The bacteria nutritional medium comprises an inexpensive carbon source that is a plant-based seed extract. The seed extract is derived from a plant-based seed comprising soluble sugars.
摘要:
The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
摘要:
The present invention relates to an enhanced starch resin composition, methods of making the enhanced starch resin composition using environmentally benign, water-based processes, and products produced using the enhanced starch resin composition. The enhanced starch resin composition comprises a native starch and/or a waxy starch crosslinked with a multi-functional polycarboxylic acid. The starch resin composition is formed by a water-based reaction comprising using a non-toxic, water-soluble catalyst to catalyze esterification of the native starch and/or the waxy starch with the multi-functional polycarboxylic acid, thereby yielding a crosslinked starch resin composition having at least one enhanced mechanical property and/or reduced moisture absorption as compared to the native starch and/or the waxy starch.
摘要:
‘Green’ composites are fabricated using resins, such as soy-based resins, and reinforced with crystalline high strength bacterial cellulose (BC) fibers. Bacterial cellulose is produced by providing a bacterial cellulose-producing bacterium such as Acetobacter xylinum; providing an inexpensive bacteria nutritional medium; culturing the bacterium in the bacteria nutritional medium under conditions to produce bacterial cellulose; and isolating bacterial cellulose produced by cultured bacteria from the bacteria nutritional medium. The bacteria nutritional medium comprises an inexpensive carbon source that is a plant-based seed extract. The seed extract is derived from a plant-based seed comprising soluble sugars.
摘要:
The present disclosure relates to, inter alia, a green technology for crosslinking protein molecules for various uses, where the protein molecules can be contained in protein fibers such as, but not limited to, human hair, animal fibers, and mixtures thereof. In one aspect, the present disclosure relates to a crosslinking agent comprising an oxidized sugar having at least two aldehyde groups. In another aspect, the present disclosure relates to a method of crosslinking protein fibers. This method involves providing the aforementioned crosslinking agent and infiltrating a plurality of non-crosslinked protein fibers with the crosslinking agent under conditions effective to cause protein molecules contained in the non-crosslinked protein fibers to become crosslinked, thereby yielding a population of crosslinked protein fibers.
摘要:
Disclosed is a method of crosslinking protein fibers, including wool fibers, by (i) providing a crosslinking agent including an oxidized sugar mixture having a plurality of different oxidized sugars of different molecular lengths and having at least two aldehyde groups (e.g., oxidized soy flour sugars); and (ii) infiltrating a plurality of non-crosslinked protein fibers with the crosslinking agent under conditions effective to cause protein molecules contained in the non-crosslinked protein fibers to become crosslinked. This method yields a population of crosslinked protein fibers, where the protein molecules of the non-crosslinked protein fibers include amine groups that react with the aldehyde groups of the oxidized sugars to achieve the crosslinking of the protein molecules to yield the crosslinked protein fibers.
摘要:
The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface,. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
摘要:
The present invention relates to an enhanced starch resin composition, methods of making the enhanced starch resin composition using environmentally benign, water-based processes, and products produced using the enhanced starch resin composition. The enhanced starch resin composition comprises a native starch and/or a waxy starch crosslinked with a multi-functional polycarboxylic acid. The starch resin composition is formed by a water-based reaction comprising using a non-toxic, water-soluble catalyst to catalyze esterification of the native starch and/or the waxy starch with the multi-functional polycarboxylic acid, thereby yielding a crosslinked starch resin composition having at least one enhanced mechanical property and/or reduced moisture absorption as compared to the native starch and/or the waxy starch.