摘要:
Disclosed are a composite cellulose nanosheet with excellent transparency and strength and manufacturing method thereof. The manufacturing method of a composite cellulose nanosheet includes: preparing a dispersion including a cellulose nanofiber and a cellulose nanocrystal; preparing a nanosheet support with the dispersion; contacting the nanosheet support with a crosslinking agent; and placing the nanosheet support that has contacted the crosslinking agent between two sheets of barrier materials such as two sheets of glass plate.
摘要:
A capsule, especially for preparing a beverage from beverage powder, in particular of coffee from coffee powder, by introducing water into the capsule, wherein the capsule comprises a compacted pellet made of a powder containing at least one polysaccharide, wherein the compacted pellet is sheathed with at least one coating layer, wherein the at least one coating layer comprises a cross-linked polysaccharide, wherein the cross-linked polysaccharide can be obtained by cross-linking a polysaccharide with a cross-linking agent without the use of a polyol spacer. A method for manufacturing such a capsule comprises the following steps:
i) preparing a compacted pellet from a powder containing at least one polysaccharide, ii) bringing at least one part and preferably the entire surface of the compacted pellet used in step i) into contact with a solution of a polysaccharide in a solvent or with a dispersion of a polysaccharide in a dispersant, iii) when appropriate, removing of the compacted pellet from the solution or dispersion of step ii), iv) bringing the compacted pellet obtained in step ii) or iii) into contact with at least one cross-linking agent, v) when appropriate, removing the compacted pellet from the solution of step iv) and vi) drying of the compacted pellet obtained in step iv) or v).
摘要:
The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
摘要:
The invention relates to porous polymeric cellulose prepared via cellulose crosslinking. The porous polymeric cellulose can be incorporated into membranes and/or hydrogels. In preferred embodiments, the membranes and/or hydrogels can provide high dynamic binding capacity at high flow rates. Membranes and/or hydrogels comprising the porous polymeric cellulose are particularly suitable for filtration, separation, and/or functionalization media.
摘要:
A process for producing porous cellulose beads of the present invention is characterized by comprising the steps of: a) mixing an alkali aqueous solution and cellulose to prepare cellulose micro dispersion at low temperature, b) adding water to the cellulose micro dispersion to prepare cellulose slurry, and d) bringing the cellulose slurry into contact with coagulation solvent. A carrier for ligand immobilization of the present invention is characterized by being by shrinking polysaccharide porous beads not less than 10% by a shrinkage rate defined by the following formula, and crosslinking the polysaccharide porous beads: Shrinkage rate (%)=(1−V2/V1)×100 (wherein, V1 indicates the gel volume of polysaccharide porous beads before shrinkage, and V2 indicates the gel volume of polysaccharide porous beads after shrinkage).
摘要:
The invention relates to porous polymeric cellulose prepared via cellulose crosslinking. The porous polymeric cellulose can be incorporated into membranes and/or hydrogels. In preferred embodiments, the membranes and/or hydrogels can provide high dynamic binding capacity at high flow rates. Membranes and/or hydrogels comprising the porous polymeric cellulose are particularly suitable for filtration, separation, and/or functionalization media.
摘要:
Provided are polymer particles which can be used at a high flow rate when used as a filler for chromatography, that is, has excellent resistance flow rate appropriate for processing in large quantities, and also has a high binding capacity for target molecules such as proteins when an appropriate ligand is contained in the particles, and a method for producing the polymer particles; specifically, crosslinked polymer particles and a method for producing the crosslinked polymer particles, polysaccharide composite particles and a method for producing the polysaccharide composite particles, a filler for chromatography using the polymer particles, and an adsorbent for antibody purification. Disclosed are: A. a method for producing polysaccharide composite particles, the method including the following steps (1) to (3): (1) a step of preparing a polysaccharide solution, in which two or more kinds of polysaccharides are dissolved in an ionic liquid; (2) a step of preparing a droplet dispersion liquid of the polysaccharide solution, in which liquid droplets of the polysaccharide solution are dispersed in an organic solvent having low compatibility with the ionic liquid; and (3) a coagulation step in which a composite of the polysaccharides are coagulated to obtain the polysaccharide composite particles; and B. a method for producing a crosslinked polymer particle, the method including a step of allowing a polymer dissolved in an ionic liquid, to react with a crosslinking agent while the polymer is subjected to droplet dispersion in an organic solvent having low compatibility with the ionic liquid.
摘要:
A new approach for improving fire resistance of cellulosic materials is provided, especially when the cellulosic material is to be used in polymer composites. Cellulosic material is treated with an aqueous mixture of alkali metal or ammonium hydroxide and alkaline earth or aluminum metal salt simultaneously with or within a short period of time of preparing the mixture. The treated cellulosic material becomes self-extinguishing and may also have improved thermal stability, improved interfacial thermal resistance, improved resistance to damage by oxidants and other chemical agents, improved resistance to biological agents and/or improved resistance to damage by ultra-violet light.
摘要:
A process for the production of dual-functional ion exchange resins from lignocellulosic agricultural material involving anionization of the lignocellulosic agricultural material with citric acid and then cationization of the lignocellulosic agricultural material with dimethyloldihydroxyethylene urea (DMDHEU) and choline chloride, or cationization of the lignocellulosic agricultural material with DMDHEU and choline chloride and then anionization of the lignocellulosic agricultural material with citric acid.