Abstract:
A decorated glass-ceramic article, including: at least three different gloss contrast regions having at least three gloss levels having a relative gloss difference of at least 20 units when measured at from at least one incidence angle of: 20 degrees, 60 degrees, or 85 degrees.Also disclosed is a method of decorating a surface to have one or more contrast levels on at least a portion of the surface of an original substrate, as defined herein.
Abstract:
A method for increasing the tactile feel of a glass-ceramic article includes (a) performing a first etching of a surface of the glass-ceramic article with a first etchant to create a plurality of features on the surface, wherein the first etchant comprises hydrofluoric acid and an inorganic fluoride salt, and the plurality of features comprises protrusions and recesses and (b) performing a second etching of the surface with a second etchant different from the first etchant to enlarge a distance between adjacent features of a same type, wherein the second etching occurs after the first etching, after the second etching an average distance between adjacent features of a same type is in a range from 0.5 μm to 20 μm and a density of features of the same type is in a range from 9,000 to 25,000 features/mm2, and a tactile feel of the surface after the second etching is greater than the tactile feel of the surface before the first etching.
Abstract:
A method for increasing the tactile feel of a glass-ceramic article includes (a) performing a first etching of a surface of the glass-ceramic article with a first etchant to create a plurality of features on the surface, wherein the first etchant comprises hydrofluoric acid and an inorganic fluoride salt, and the plurality of features comprises protrusions and recesses and (b) performing a second etching of the surface with a second etchant different from the first etchant to enlarge a distance between adjacent features of a same type, wherein the second etching occurs after the first etching, after the second etching an average distance between adjacent features of a same type is in a range from 0.5 μm to 20 μm and a density of features of the same type is in a range from 9,000 to 25,000 features/mm2, and a tactile feel of the surface after the second etching is greater than the tactile feel of the surface before the first etching.
Abstract:
Embodiments of anti-glare substrates and articles including the same are disclosed. In one or more embodiments, the anti-glares substrate includes a textured surface with a plurality of features having an average cross-sectional dimension of about 30 micrometers or less. The substrate or article exhibits a transmission haze of 10% or less, a PPDr of about 7% or less or 6% or less, and a DOI of about 80 or less. Method for forming the anti-glare substrates are also disclosed and include etching a surface of a substrate with an etchant having low water solubility to provide an etched surface, and removing a portion of the etched surface. The method includes generating a plurality of insoluble crystals (e.g., any one or more of K?2#191SiF?6#191 and K?3#191AlF?6#191) on the surface while etching the surface. The etchant may include a potassium salt, an organic solvent and a fluoride containing acid.
Abstract:
A method for increasing the tactile feel of a glass-ceramic article includes (a) performing a first etching of a surface of the glass-ceramic article with a first etchant to create a plurality of features on the surface, wherein the first etchant comprises hydrofluoric acid and an inorganic fluoride salt, and the plurality of features comprises protrusions and recesses and (b) performing a second etching of the surface with a second etchant different from the first etchant to enlarge a distance between adjacent features of a same type, wherein the second etching occurs after the first etching, after the second etching an average distance between adjacent features of a same type is in a range from 0.5 μm to 20 μm and a density of features of the same type is in a range from 9,000 to 25,000 features/mm2, and a tactile feel of the surface after the second etching is greater than the tactile feel of the surface before the first etching.
Abstract:
Embodiments of anti-glare substrates and articles including the same are disclosed. In one or more embodiments, the anti-glares substrate includes a textured surface with a plurality of features having an average cross-sectional dimension of about 30 micrometers or less. The substrate or article exhibits a transmission haze of 10% or less, a PPDr of about 7% or less or 6% or less, and a DOI of about 80 or less. Method for forming the anti-glare substrates are also disclosed and include etching a surface of a substrate with an etchant having low water solubility to provide an etched surface, and removing a portion of the etched surface. The method includes generating a plurality of insoluble crystals (e.g., any one or more of K2SiF6 and K3AlF6) on the surface while etching the surface. The etchant may include a potassium salt, an organic solvent and a fluoride containing acid.
Abstract:
Embodiments of anti-glare substrates and articles including the same are disclosed. In one or more embodiments, the anti-glares substrate includes a textured surface with a plurality of features having an average cross-sectional dimension of about 30 micrometers or less. The substrate or article exhibits a transmission haze of 10% or less, a PPDr of about 7% or less or 6% or less, and a DOI of about 80 or less. Method for forming the anti-glare substrates are also disclosed and include etching a surface of a substrate with an etchant having low water solubility to provide an etched surface, and removing a portion of the etched surface. The method includes generating a plurality of insoluble crystals (e.g., any one or more of K2SiF6 and K3AlF6) on the surface while etching the surface. The etchant may include a potassium salt, an organic solvent and a fluoride containing acid.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
Embodiments of anti-glare substrates and articles including the same are disclosed. In one or more embodiments, the anti-glares substrate includes a textured surface with a plurality of features having an average cross-sectional dimension of about 30 micrometers or less. The substrate or article exhibits a transmission haze of 10% or less, a PPDr of about 7% or less or 6% or less, and a DOI of about 80 or less. Method for forming the anti-glare substrates are also disclosed and include etching a surface of a substrate with an etchant having low water solubility to provide an etched surface, and removing a portion of the etched surface. The method includes generating a plurality of insoluble crystals (e.g., any one or more of K2SiF6 and K3AlF6) on the surface while etching the surface. The etchant may include a potassium salt, an organic solvent and a fluoride containing acid.
Abstract:
A method for increasing the tactile feel of a glass-ceramic article includes (a) performing a first etching of a surface of the glass-ceramic article with a first etchant to create a plurality of features on the surface, wherein the first etchant comprises hydrofluoric acid and an inorganic fluoride salt, and the plurality of features comprises protrusions and recesses and (b) performing a second etching of the surface with a second etchant different from the first etchant to enlarge a distance between adjacent features of a same type, wherein the second etching occurs after the first etching, after the second etching an average distance between adjacent features of a same type is in a range from 0.5 μm to 20 μm and a density of features of the same type is in a range from 9,000 to 25,000 features/mm2, and a tactile feel of the surface after the second etching is greater than the tactile feel of the surface before the first etching.