Abstract:
Laminated glass-based articles are provided. The glass-based articles include at least a first glass-based layer, a second glass-based layer, and a polymer layer disposed between the first and second glass-based layers. The first glass-based layer includes a compressive stress. A difference between the coefficient of thermal of expansion of the first glass-based layer and the coefficient of thermal of expansion of the second glass-based layer is greater than or equal to 0.4 ppm/° C. Methods of producing the laminated glass-based articles are also provided.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
Described herein are coating compositions for protecting one-glass solution (OGS) glasses and other display glasses during processing. The coatings are non-reactive to typical indium-tin oxide touch components, metal electrodes, and black matrix inks, and can thus be used to over-coat these materials. In one aspect, the coating compositions described herein can be applied by a screen printing application process in a single layer or in multiple layers and are compatible with CNC edge grinding and acid etching. Further, the protective coatings are rigid, but not brittle, and are durable but still able to be processed rapidly. Additionally, the protective coatings are transparent, allowing alignment marks on the substrates to be visible. Finally, the protective coatings can easily be removed after substrate processing has been completed.
Abstract:
A method of chemically strengthening a glass-based article via ion exchange, wherein the glass-based article has a thickness of less than about 300 mm. The glass-based article may be chemically strengthened by ion exchanged to achieve a depth of compression DOC ranging from about 5 mm to about 60 mm and a peak compressive stress in a range from about 300 MPa to about 2000 MPa. The high peak compressive stress provides the ability to withstand the stresses associated with bending and to resist damage caused by impact. Additionally, the glass-based article retains net compression to contain surface flaws when the glass is subjected to bending around a tight radius in use, for example, as cover glass in flexible and foldable displays.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.