Abstract:
A light fixture, e.g., as an artificial skylight, in which light within a region defined by x, y color coordinates (0.37, 0.34), (0.35, 0.38), (0.15, 0.20), and (0.20, 0.14) exits a first light engine, and light within a region defined by coordinates (0.29, 0.32), (0.32, 0.29), (0.41, 0.36), (0.48, 0.39), (0.48, 0.43), (0.40, 0.41), and (0.35, 0.38) exits a second light engine. Also, light fixtures in which a second light engine comprises a sidewall, and light exiting a first light engine passes through space defined by the sidewall; light fixtures in which first and second light engines are able to output light providing different CS values at a luminance; light fixtures in which light incident on a surface of the fixture and cumulative light exiting the fixture have different color points; light fixtures in which light distribution characteristics of light engines differ; and/or other features. Also, methods.
Abstract:
Light emitting diodes are disclosed that utilize multiple conversion materials in the conversion process in order to achieve the desired emission color point. Different embodiments of the present invention can comprise different phosphor types in separate layers on, above or around one or a plurality of LED chips to achieve the desired light conversion. The LEDs can then emit a desired combination of light from the LED chips and conversion material. In some embodiments, conversion materials can be applied as layers of different phosphor types in order of longest emission wavelength phosphor first, followed by shorter emission phosphors in sequence as opposed to applying in a homogeneously mixed phosphor converter. The conversion material layers can be applied as a blanket over the LED chips and the area surrounding the chip, such as the surface of a submount holding the LED chips.
Abstract:
Light emitting diodes are disclosed that utilize multiple conversion materials in the conversion process in order to achieve the desired emission color point. Different embodiments of the present invention can comprise different phosphor types in separate layers on, above or around one or a plurality of LED chips to achieve the desired light conversion. The LEDs can then emit a desired combination of light from the LED chips and conversion material. In some embodiments, conversion materials can be applied as layers of different phosphor types in order of longest emission wavelength phosphor first, followed by shorter emission phosphors in sequence as opposed to applying in a homogeneously mixed phosphor converter. The conversion material layers can be applied as a blanket over the LED chips and the area surrounding the chip, such as the surface of a submount holding the LED chips.