Abstract:
A solid state lighting apparatus can include an electrical connector that is configured to couple to a standardized electrical fixture, where the electrical connector provides a recess therein. A cover can be coupled to the electrical connector to cover the recess and a solid state lighting driver circuit can be located beneath the cover. A solid state lighting housing, that is separate from the electrical connector and the cover, can be configured to house a solid state light emitting device and at least one flexible wire can electrically couple the solid state lighting driver circuit to the solid state light emitting device.
Abstract:
A LED lamp includes an optically transmissive enclosure and a base connected to the enclosure. LEDs are mounted on a substrate for emitting light when energized though an electrical path from the base. The substrate and the LEDs are mounted outside of the enclosure for transmitting light from the plurality of LEDs into the enclosure.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. A board supports lamp electronics for the lamp and is located in the enclosure. The LED array is mounted to the board and LEDs are mounted on a submount formed to have a three dimensional shape. The board is electrically coupled to the LED array and the submount may be thermally coupled to the gas for dissipating heat from the plurality of LEDs.
Abstract:
A LED lamp includes an optically transmissive enclosure and a base connected to the enclosure. LEDs are mounted on a substrate for emitting light when energized though an electrical path from the base. The mounting substrate for the LEDs has a surface that is exposed to the exterior of the enclosure for transmitting heat from the plurality of LEDs and dissipating heat to the ambient environment.
Abstract:
High voltage array light emitting devices, fixtures and methods are disclosed. In one embodiment a light emitting device can include a submount, a light emission area disposed over the submount and a retention material adapted to be dispensed about the light emission area. The light emitting device can be operable at high voltages which are greater than approximately 40 volts (V). In one aspect, the retention material can be least partially disposed within the light emission area such that the retention material physically separates a first section of the light emission area from a second section of the light emission area.
Abstract:
A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. The gas may include oxygen.
Abstract:
A lamp has an optically transmissive enclosure and a base defining a longitudinal axis of the lamp that extends from the base to the free end of the enclosure. An LED assembly is positioned in the optically transmissive enclosure. The LED assembly includes LEDs operable to emit light when energized through an electrical path from the base. The LED assembly is arranged such that the plurality of LEDs face perpendicularly to the longitudinal axis of the lamp. The emission profile of the LEDs being at least 120 degrees FWHM.
Abstract:
A driving circuit for a solid state lighting apparatus includes a full wave rectifier configured to rectify an alternating current (AC) input voltage signal to generate a rectified input signal, a boost conversion circuit configured to receive the rectified input signal and responsively generate a direct current (DC) output voltage signal and to supply the output voltage signal to a solid state light source, and a boost control circuit coupled to the boost conversion circuit and configured to cause the boost conversion circuit to operate in a constant power mode.
Abstract:
A solid state lighting apparatus can include an electrical connector that is configured to couple to a standardized electrical fixture, where the electrical connector provides a recess therein. A cover can be coupled to the electrical connector to cover the recess and a solid state lighting driver circuit can be located beneath the cover. A solid state lighting housing, that is separate from the electrical connector and the cover, can be configured to house a solid state light emitting device and at least one flexible wire can electrically couple the solid state lighting driver circuit to the solid state light emitting device.