Abstract:
Various embodiments relate to a method of operating an engine system with injectors having nozzle sac volume. The engine system may be a four-stroke, high power engine having a high-pressure common-rail injection system. A number of engine cylinders to fire is selected based on a fuel injection quantity per selected engine cylinder such that a nitrogen oxides (NOx) emission is less than a first predetermined threshold and a smoke value is less than a second predetermined threshold. The fuel injection quantity per cylinder may be higher than a nominal fuel injection quantity to improve fuel injector spray characteristics. The exhaust can be mixed with fresh air blowout from deactivated cylinders to further reduce smoke value. The engine system is operated with a firing pattern for the selected number of cylinders to fire.
Abstract:
A system includes an exhaust aftertreatment system in exhaust gas receiving communication with an engine including a plurality of cylinders where the engine is structured to operate according to low load conditions and where a controller is structured to determine that at least one diesel emissions fluid (DEF) doser is frozen based on at least one of an ambient air temperature and a DEF source temperature. The controller is structured to operate the engine according to a skip-fire mode in response to a DEF flag indicating that the at least one DEF doser is frozen. The skip-fire mode comprises firing a portion of the plurality of cylinders that is less than a total amount of cylinders of the plurality of cylinders. The controller is structured to discontinue the skip-fire mode in response to determining that the at least one DEF doser is likely thawed.
Abstract:
Various embodiments relate to a method of operating an engine system with injectors having nozzle sac volume. The engine system may be a four-stroke, high power engine having a high-pressure common-rail injection system. A number of engine cylinders to fire is selected based on a fuel injection quantity per selected engine cylinder such that a nitrogen oxides (NOx) emission is less than a first predetermined threshold and a smoke value is less than a second predetermined threshold. The fuel injection quantity per cylinder may be higher than a nominal fuel injection quantity to improve fuel injector spray characteristics. The exhaust can be mixed with fresh air blowout from deactivated cylinders to further reduce smoke value. The engine system is operated with a firing pattern for the selected number of cylinders to fire.
Abstract:
Systems and methods for removing soot in an aftertreatment system are disclosed. A method includes: receiving data regarding an exhaust gas flow rate of exhaust gas; receiving data regarding a selective catalytic reduction (SCR) inlet temperature; determining an adsorption amount of soot in the exhaust aftertreatment system based on the exhaust gas flow rate of the exhaust gas and the SCR inlet temperature; comparing the adsorption amount of soot to a predefined adsorption amount limit; in response to the adsorption amount of soot exceeding the predefined adsorption amount limit; initiating an exhaust cleaning event to remove at least some accumulated soot in the exhaust aftertreatment system; receiving exhaust gas data during the exhaust cleaning event; determining a desorption amount of soot based on the exhaust gas data; comparing the desorption amount of soot to a predefined desorption limit; and ceasing the exhaust cleaning event based on the comparison.
Abstract:
A method of controlling a fuel injector comprises measuring a pressure in a cylinder of an engine with a pressure sensor and determining at least one of a crank angle and a crank speed with a crank sensor. The method also comprises calculating a net indicated mean effective pressure of the cylinder from the measured value of the pressure sensor and the determined value of the crank sensor. Also, the method comprises adjusting a fueling parameter of a fuel injector for the cylinder in response to the difference between the calculated net indicated mean effective pressure and a reference mean effective pressure indicates a change in power of the engine. Alternatively, the method may adjust the fueling parameter based on a power feedback signal for the engine.
Abstract:
A system and method for controlling a temperature of an exhaust gas at an inlet of a selective catalytic reduction system during at least certain low air density conditions. The system may detect an air density value upstream of an internal combustion engine of an engine system, such as, for example, at an inlet of a compressor. Using the detected air density, one of a plurality of relationships between an engine speed and an outputted engine power, as a function of the detected air density value, may be selected for use in determining what combination of engine speed(s) and/or engine power(s) will produce an exhaust gas that is within a target exhaust gas temperature. Using the selected relationship, at least one of the engine speed and the engine power may be adjusted to at least assist in attaining the target exhaust gas temperature.
Abstract:
Systems and methods for removing accumulated soot in an aftertreatment system are disclosed herein. A method includes: determining, by a controller, an adsorption amount of soot in an exhaust aftertreatment system; comparing, by the controller, the adsorption amount of soot to a predefined adsorption amount limit; in response to the adsorption amount exceeding the predefined adsorption amount limit, initiating, by the controller, an exhaust cleaning event to remove at least some accumulated soot in the exhaust aftertreatment system; receiving, by the controller, exhaust gas data during the exhaust cleaning event; determining, by the controller, a desorption amount of soot based on the exhaust gas data; comparing, by the controller, the desorption amount of soot to a predefined desorption limit; and ceasing, by the controller, the exhaust cleaning event based on the comparison.
Abstract:
Systems and methods for removing accumulated soot in an aftertreatment system are disclosed herein. A method includes: determining, by a controller, an adsorption amount of soot in an exhaust aftertreatment system; comparing, by the controller, the adsorption amount of soot to a predefined adsorption amount limit; in response to the adsorption amount exceeding the predefined adsorption amount limit, initiating, by the controller, an exhaust cleaning event to remove at least some accumulated soot in the exhaust aftertreatment system; receiving, by the controller, exhaust gas data during the exhaust cleaning event; determining, by the controller, a desorption amount of soot based on the exhaust gas data; comparing, by the controller, the desorption amount of soot to a predefined desorption limit; and ceasing, by the controller, the exhaust cleaning event based on the comparison.
Abstract:
A system includes an exhaust aftertreatment system in exhaust gas receiving communication with an engine including a plurality of cylinders where the engine is structured to operate according to low load conditions and where a controller is structured to determine that at least one diesel emissions fluid (DEF) doser is frozen based on at least one of an ambient air temperature and a DEF source temperature. The controller is structured to operate the engine according to a skip-fire mode in response to a DEF flag indicating that the at least one DEF doser is frozen. The skip-fire mode comprises firing a portion of the plurality of cylinders that is less than a total amount of cylinders of the plurality of cylinders. The controller is structured to discontinue the skip-fire mode in response to determining that the at least one DEF doser is likely thawed.
Abstract:
A system and method for controlling a temperature of an exhaust gas at an inlet of a selective catalytic reduction system during at least certain low air density conditions. The system may detect an air density value upstream of an internal combustion engine of an engine system, such as, for example, at an inlet of a compressor. Using the detected air density, one of a plurality of relationships between an engine speed and an outputted engine power, as a function of the detected air density value, may be selected for use in determining what combination of engine speed(s) and/or engine power(s) will produce an exhaust gas that is within a target exhaust gas temperature. Using the selected relationship, at least one of the engine speed and the engine power may be adjusted to at least assist in attaining the target exhaust gas temperature.