摘要:
A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.
摘要:
A method for modeling changes in the state of charge vs. open circuit voltage (SOC-OCV) curve for a lithium-ion battery cell as it ages. During battery pack charging, voltage and current data are gathered for a battery cell. A set of state equations are used to determine the stoichiometry and state of charge of the cathode half-cell based on the charging current profile over time. The voltage and current data, along with the stoichiometry and state of charge of the cathode half-cell, are then used to estimate maximum and minimum solid concentration values at the anode, using an error function parameter regression/optimization. With stoichiometric conditions at both the cathode and anode calculated, the cell's capacity and a new SOC-OCV curve can be determined.
摘要:
A method and system for use with a vehicle battery pack having a number of individual battery cells, where the method estimates, extrapolates or otherwise determines individual cell resistances. According to an exemplary embodiment, the method and system use a voltage and temperature reading for each of the individual battery cells, as well as a voltage and current reading for the overall battery pack to determine one or more cell resistance values, such as a minimum and maximum cell resistance for the battery pack. This approach relies upon temperature deviations in the battery pack to make assumptions or estimates regarding individual battery cell resistances. By having individual cell resistance values—instead of using an overall pack resistance value and building in a buffer to account for cell variations—better and more accurate cell-level data can be obtained that, in turn, can improve charging, discharging, cell balancing and/or other battery-related processes.
摘要:
A method for estimating the capacity of a vehicle battery while in service. The method includes providing a previous battery state-of-charge, battery temperature and integrated battery current amp-hours, and determining that battery contactors have been closed after they have been opened and disconnected from a load. The method determines if the battery has been at rest for a long enough period of time while the contactors were open, where the battery rest time is based on battery temperature, and determines an initial battery voltage from a last time step when the battery contactors were closed prior to the contactors being open during the battery rest time. The method determines a present battery state-of-charge from the initial battery voltage and the battery temperature and calculates the battery capacity based on the battery integrated current amp-hours divided by the difference between the present battery state-of-charge and the previous battery state-of-charge.
摘要:
A method for modeling changes in the state of charge vs. open circuit voltage (SOC-OCV) curve for a lithium-ion battery cell as it ages. During battery pack charging, voltage and current data are gathered for a battery cell. A set of state equations are used to determine the stoichiometry and state of charge of the cathode half-cell based on the charging current profile over time. The voltage and current data, along with the stoichiometry and state of charge of the cathode half-cell, are then used to estimate maximum and minimum solid concentration values at the anode, using an error function parameter regression/optimization. With stoichiometric conditions at both the cathode and anode calculated, the cell's capacity and a new SOC-OCV curve can be determined.
摘要:
A vehicle battery and charging method that may be used to balance cell voltages during a battery charging operation, and may do so in a way that protects the individual cells from over-charging and improves the overall efficiency of the operation. According to one example, the vehicle battery includes a number of cell-balancing current paths, each of which is connected in parallel to an individual battery cell and can shunt or bypass the corresponding cell when its voltage exceeds some maximum amount. This may enable under-charged battery cells to be charged at the same time that over-charged battery cells are bypassed. Each of the cell-balancing current paths may include a series-connected electronic switch and zener diode combination, where the electronic switch is controlled by a battery control module so that cell-balancing can be enabled during a battery charging operation and disabled at other times.
摘要:
A method includes estimating a first diffusion voltage value of a battery by selecting the first diffusion voltage value from a look-up table, estimating a second diffusion voltage value of the battery using an estimation procedure, selecting at least one of the estimated first and second diffusion voltage values, and determining an open circuit voltage of the battery based at least in part on the selected diffusion voltage value. The method may be implemented by a computing device in a vehicle.
摘要:
A method for estimating the capacity of a vehicle battery while in service. The method includes providing a previous battery state-of-charge, battery temperature and integrated battery current amp-hours, and determining that battery contactors have been closed after they have been opened and disconnected from a load. The method determines if the battery has been at rest for a long enough period of time while the contactors were open, where the battery rest time is based on battery temperature, and determines an initial battery voltage from a last time step when the battery contactors were closed prior to the contactors being open during the battery rest time. The method determines a present battery state-of-charge from the initial battery voltage and the battery temperature and calculates the battery capacity based on the battery integrated current amp-hours divided by the difference between the present battery state-of-charge and the previous battery state-of-charge.
摘要:
A vehicle battery and charging method that may be used to balance cell voltages during a battery charging operation, and may do so in a way that protects the individual cells from over-charging and improves the overall efficiency of the operation. According to one example, the vehicle battery includes a number of cell-balancing current paths, each of which is connected in parallel to an individual battery cell and can shunt or bypass the corresponding cell when its voltage exceeds some maximum amount. This may enable under-charged battery cells to be charged at the same time that over-charged battery cells are bypassed. Each of the cell-balancing current paths may include a series-connected electronic switch and zener diode combination, where the electronic switch is controlled by a battery control module so that cell-balancing can be enabled during a battery charging operation and disabled at other times.
摘要:
A method and system for use with a vehicle battery pack having a number of individual battery cells, where the method estimates, extrapolates or otherwise determines individual cell resistances. According to an exemplary embodiment, the method and system use a voltage and temperature reading for each of the individual battery cells, as well as a voltage and current reading for the overall battery pack to determine one or more cell resistance values, such as a minimum and maximum cell resistance for the battery pack. This approach relies upon temperature deviations in the battery pack to make assumptions or estimates regarding individual battery cell resistances. By having individual cell resistance values—instead of using an overall pack resistance value and building in a buffer to account for cell variations—better and more accurate cell-level data can be obtained that, in turn, can improve charging, discharging, cell balancing and/or other battery-related processes.