摘要:
A bulk-acoustic-mode MEMS resonator has a first portion with a first physical layout, and a layout modification feature. The resonant frequency is a function of the physical layout, which is designed such that the frequency variation is less than 150 ppm for a variation in edge position of the resonator shape edges of 50 nm. This design combines at least two different layout features in such a way that small edge position variations (resulting from uncontrollable process variation) have negligible effect on the resonant frequency.
摘要:
A resonator in which in addition to the normal anchor at a nodal point, a second anchor arrangement is provided and an associated connecting arm between the resonator body and the second anchor arrangement. The connecting arm connects to the resonator body at a non-nodal point so that it is not connected to a normal position where fixed connections are made. The connecting arm is used to suppress transverse modes of vibration.
摘要:
A bulk-acoustic-mode MEMS resonator has a first portion with a first physical layout, and a layout modification feature. The resonant frequency is a function of the physical layout, which is designed such that the frequency variation is less than 150 ppm for a variation in edge position of the resonator shape edges of 50 nm. This design combines at least two different layout features in such a way that small edge position variations (resulting from uncontrollable process variation) have negligible effect on the resonant frequency.
摘要:
Disclosed is a device comprising a substrate carrying a microscopic structure in a cavity capped by a capping layer including a material of formula SiNxHy, wherein x>1.33 and y>0. A method of forming such a device is also disclosed.
摘要翻译:公开了一种装置,其包括在由包含式SiN x H y的材料的覆盖层封盖的空腔中承载微观结构的基板,其中x> 1.33且y> 0。 还公开了一种形成这种装置的方法。
摘要:
A method of packaging a micro electro-mechanical structure comprises forming said structure on a substrate; depositing a sacrificial layer over said structure; patterning the sacrificial layer; depositing a SIPOS (semi-insulating polycrystalline silicon) layer over the patterned sacrificial layer; treating the SIPOS layer with an etchant to convert the SIPOS layer into a porous SIPOS layer, removing the patterned sacrificial layer through the porous layer SIPOS to form a cavity including said structure; and sealing the porous SIPOS layer. A device including such a packaged micro electro-mechanical structure is also disclosed.
摘要:
A MEMS manufacturing method and device in which a spacer layer is provided over a side wall of at least one opening in a structural layer which will define the movable MEMS element. The opening extends below the structural layer. The spacer layer forms a side wall portion over the side wall of the at least one opening and also extends below the level of the structural layer to form a contact area.
摘要:
A MEMS resonator comprises a resonator body (34), and an anchor (32) which provides a fixed connection between the resonator body (34) and a support body. A resistive heating element (R1,R2) and a feedback control system are used to maintain the resonator body (34) at a constant temperature. A location for thermally coupling the anchor (32) to the resistive heating element (R1,R2) is selected which has a lowest dependency of its temperature on the ambient temperature during the operation of the feedback control.
摘要:
MEMS oscillators, which include a silicon-type, in particular piezoresistive resonators, can be used to provide a fixed, stable output frequency. Silicon has a natural temperature dependence of Young's modulus, therefore, as ambient temperature changes and/or the piezoresistive resonator is powered, the resonator temperature changes, and the resonance frequency of the resonator drifts. In order to account for the temperature drift of the piezoresistive resonator, the piezoresistive resonator itself is used as a temperature sensor. The relative resistance change of the piezoresistive resonator depends only on the relative temperature change and material property of the resonator. Therefore, an accurate temperature can be sensed directly on the piezoresistive resonator. The temperature drift information is provided to a frequency adjuster, which corrects the output frequency of the circuit.
摘要:
A piezoresistive MEMS oscillator uses an output circuit to control the voltage across the resonator body. This results in a DC bias of the resonator. A current path is provided between the output of the output circuit and the resonator body, such that changes in current through or voltage across the resonator body, resulting from changes in resistance of the resonator body, are coupled to the output. This arrangement uses the bias current flowing through the resonator to derive the output. In this way, the same DC current is used to provide the required DC resonator bias and to drive the output circuit to its DC operating point.
摘要:
MEMS oscillators, which include a silicon-type, in particular piezoresistive resonators, can be used to provide a fixed, stable output frequency. Silicon has a natural temperature dependence of Young's modulus, therefore, as ambient temperature changes and/or the piezoresistive resonator is powered, the resonator temperature changes, and the resonance frequency of the resonator drifts. In order to account for the temperature drift of the piezoresistive resonator, the piezoresistive resonator itself is used as a temperature sensor. The relative resistance change of the piezoresistive resonator depends only on the relative temperature change and material property of the resonator. Therefore, an accurate temperature can be sensed directly on the piezoresistive resonator. The temperature drift information is provided to a frequency adjuster, which corrects the output frequency of the circuit.