摘要:
Polymeric microstructures and nanostructures can be prepared with use of a tip to pattern a surface. A tip can be used to pattern a structure which can initiate polymerization. The structure can be then exposed to monomer to induce polymerization at the structure. Alternatively, a tip can be used to pattern a surface with a monomer in which the surface is treated with polymerization catalyst so that polymerization occurs at the patterning site. Ring-opening metathesis polymerization can be carried out with use of the tip to control the polymerization. The tip can be a sharp tip as used in for example an atomic force microscope tip. Norbornene types of monomers can be used. Biological macromolecules can be also prepared.
摘要:
Polymeric microstructures and nanostructures can be prepared with use of a tip to pattern a surface. A tip can be used to pattern a structure which can initiate polymerization. The structure can be then exposed to monomer to induce polymerization at the structure. Alternatively, a tip can be used to pattern a surface with a monomer in which the surface is treated with polymerization catalyst so that polymerization occurs at the patterning site. Ring-opening metathesis polymerization can be carried out with use of the tip to control the polymerization. The tip can be a sharp tip as used in for example an atomic force microscope tip. Norbornene types of monomers can be used. Biological macromolecules can be also prepared.
摘要:
Polymeric microstructures and nanostructures can be prepared with use of a tip to pattern a surface. A tip can be used to pattern a structure which can initiate polymerization. The structure can be then exposed to monomer to induce polymerization at the structure. Alternatively, a tip can be used to pattern a surface with a monomer in which the surface is treated with polymerization catalyst so that polymerization occurs at the patterning site. Ring-opening metathesis polymerization can be carried out with use of the tip to control the polymerization. The tip can be a sharp tip as used in for example an atomic force microscope tip. Norbornene types of monomers can be used. Biological macromolecules can be also prepared.
摘要:
The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.
摘要:
The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The process can comprise providing a substrate, providing a nanoscopic tip having an inking composition thereon, wherein the inking composition comprises at least one metal oxide precursor; and transferring the inking composition from the nanoscopic tip to the substrate to form a deposit on the substrate comprising at least one metal oxide precursor, and optionally further comprising the step of converting the metal oxide precursor on the substrate to form the metal oxide. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.
摘要:
The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.
摘要:
A direct-write method for fabricating magnetic nanostructures, including hard magnetic nanostructures of barium hexaferrite, BaFe, based on nanolithographic printing and a sol-gel process. This method utilizes a conventional atomic force microscope tip, coated with a magnetic material precursor solution, to generate patterns that can be post-treated at elevated temperature to generate magnetic features consisting of barium ferrite in its hexagonal magnetoplumbite (M-type) structure. Features ranging from several hundred nm down to below 100 nm were generated and studied using AFM, magnetic force microscopy, and X-ray photoelectron spectroscopy. The approach offers a new way for patterning functional inorganic magnetic nanostructures with deliberate control over feature size and shape, as well as interfeature distance and location.
摘要:
Polymeric microstructures and nanostructures can be prepared with use of a tip to pattern a surface. A tip can be used to pattern a structure which can initiate polymerization. The structure can be then exposed to monomer to induce polymerization at the structure. Alternatively, a tip can be used to pattern a surface with a monomer in which the surface is treated with polymerization catalyst so that polymerization occurs at the patterning site. Ring-opening metathesis polymerization can be carried out with use of the tip to control the polymerization. The tip can be a sharp tip as used in for example an atomic force microscope tip. Norbornene types of monomers can be used. Biological macromolecules can be also prepared.
摘要:
A kind of temperature controlling device of heating element and method thereof detect the actual temperature of heating body of the heating element, and calculate the descending gradient and frequency of temperature based on the detected actual temperature. The norm signal is formed based on the actual temperature, descending gradient and frequency of the temperature to control the switch power as to achieve the split second control for the electric power of the heating element.
摘要:
The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.