摘要:
The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.
摘要:
In one aspect, a method of nanolithography is provided using a driving force to control the movement of a deposition compound from a scanning probe microscope tip to a substrate. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.
摘要:
Polymeric microstructures and nanostructures can be prepared with use of a tip to pattern a surface. A tip can be used to pattern a structure which can initiate polymerization. The structure can be then exposed to monomer to induce polymerization at the structure. Alternatively, a tip can be used to pattern a surface with a monomer in which the surface is treated with polymerization catalyst so that polymerization occurs at the patterning site. Ring-opening metathesis polymerization can be carried out with use of the tip to control the polymerization. The tip can be a sharp tip as used in for example an atomic force microscope tip. Norbornene types of monomers can be used. Biological macromolecules can be also prepared.
摘要:
A novel coordination chemistry or metal ion binding approach to controlling the site-isolation and orientation of virus particles, such as TMV, on a nanoarray template generated by lithography including Dip Pen Nanolithography. By using the surface chemistry that is inherent in many viruses, metal-ion based or inorganic coordination chemistry was used to immobilize individual virus particles without the need for their genetic modification. Single particle control will enable a wide variety of studies involving viruses that are not possible with microarrays because of the size mismatch between the architecture of the virus and the features that make up such arrays. These include: single particle, single cell infectivity studies, the exploration of such structures as templates in materials synthesis and molecular electronics, and studies aimed at understanding how surface presentation can influence their bioactivity. This is a pioneering example of such control at the single-particle level, and therefore, commercial use of nanoarrays in biological systems.
摘要:
The present invention relates to methods and compositions for separation of proteins. In particular, the present invention provides multicomponent nanorods for biomolecular separations of proteins.
摘要:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
摘要:
The present invention relates composite core/shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core/shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule-core/shell nanoparticle conjugates.
摘要:
Lithographic and nanolithographic methods that involve patterning a first compound on a substrate surface, exposing non-patterned areas of the substrate surface to a second compound and removing the first compound while leaving the second compound intact. The resulting hole patterns can be used as templates for either chemical etching of the patterned area of the substrate or metal deposition on the patterned area of the substrate.
摘要:
Methods and articles providing for precise aligning, positioning, shaping, and linking of nanotubes and carbon nanotubes. An article comprising: a solid surface comprising at least two different surface regions including: a first surface region which comprises an outer boundary and which is adapted for carbon nanotube adsorption, and a second surface region which is adapted for preventing carbon nanotube adsorption, the second region forming an interface with the outer boundary of the first region, at least one carbon nanotube which is at least partially selectively adsorbed at the interface. The shape and size of the patterns on the surface and the length of the carbon nanotube can be controlled to provide for selective interfacial adsorption.
摘要:
Novel phase-separation behavior by a mixture, including binary mixture, of patterning compounds, including alkanethiols, when deposited onto a surface, including a gold surface, using micro and nano-deposition tools such as tip and stamp methods like micro-contact printing (μCP), and Dip-Pen Nanolithography (DPN). This behavior is significantly different than that observed in the bulk. This behavior was demonstrated using three examples of compounds: 16-mercaptohexadecanoic acid (MHA), 1-octadecanethiol (ODT), and CF3(CF2)11(CH2)2SH (PFT). The identity of the resulting segregated structure was confirmed by lateral force microscopy (LFM), and by selective metal-organic coordination chemistry. This phenomenon is exploited to print sub-100 nm wide alkanethiol features via conventional μCP and to form sub-15 nm features using DPN printing, which is below the ultimate resolution of both these techniques. These nano-patterned materials also can serve as templates for constructing more complex architectures.