摘要:
An insulated gate field effect semiconductor component having a source-side halo region and a method for manufacturing the semiconductor component. A gate structure is formed on a semiconductor substrate. The source-side halo region is formed in the semiconductor substrate. After formation of the source-side halo region, spacers are formed adjacent opposing sides of the gate structure. A source extension region and a drain extension region are formed in the semiconductor substrate using an angled implant. The source extension region extends under the gate structure, whereas the drain extension may extend under the gate structure or be laterally spaced apart from the gate structure. A source region and a drain region are formed in the semiconductor substrate.
摘要:
An insulated gate field effect transistor having reduced gate-drain overlap and a method for manufacturing the insulated gate field effect transistor. A gate structure is formed on a major surface of a semiconductor substrate. A source extension region and a drain extension region are formed in a semiconductor material using an angled implant. The source extension region extends under the gate structure, whereas the drain extension region is laterally spaced apart from the gate structure. A source region is formed in the semiconductor substrate and a drain region is formed in the semiconductor substrate, where the source and drain regions are laterally spaced apart from the gate structure. A source-side halo region is formed in the semiconductor substrate adjacent the source extension region.
摘要:
Semiconductor devices with improved transistor performance are fabricated by forming a composite oxide/nitride liner under a gate electrode sidewall spacer. Embodiments include depositing a conformal oxide layer by decoupled plasma deposition, depositing a conformal nitride layer by decoupled plasma deposition, depositing a spacer layer and then etching.
摘要:
A method for asymmetric spacer formation integratable into a manufacturing process for integrated circuit semiconductor devices is presented. The method comprises forming a gate structure over a substrate, and forming a sidewall layer overlying the gate structure and substrate, wherein the sidewall layer comprises a first portion overlying a first sidewall of the gate structure. A photoresist structure is formed adjacent to the first portion, and subjected to an ion beam. The photoresist structure serves to shield at least part of the first portion from the ion beam. During irradiation, the wafer is oriented such that a non-orthogonal tilt angle exists between a path of the ion beam and a surface of the first sidewall. Formation of asymmetric spacers is possible because radiation damage to unshielded sidewall portions permits subsequent etches to proceed at a faster rate.
摘要:
A semiconductor device having asymmetrically-doped gate electrode and active region and a process of fabricating such a device is provided. According to one embodiment of the invention, a polysilicon layer is formed over the substrate. The polysilicon layer is then implanted with a first dopant to form a doped polysilicon layer. Portions of the doped polysilicon layer are then removed to form at least one gate electrode. Active regions of the substrate adjacent the gate electrode are implanted with a second dopant to form source/drain regions in the substrate. In this manner, the implant used to form the source/drain regions may be decoupled from the implant used to form the gate electrode. This, for example, allows for shallower source/drain regions to be formed without the formation of the depletion layer in the gate electrode.
摘要:
Shallow trench isolation silicon-on-insulator (SOI) devices are formed with improved charge protection. Embodiments include an SOI film diode and a P+ substrate junction as a charging protection device. Embodiments also include a conductive path from the SOI transistor drain, through a conductive contact, a metal line, a second conductive contact, an SOI diode, isolated from the transistor, a third conductive contact, a second conductive line, and a fourth conductive contact to a P+-doped substrate contact in the bulk silicon layer of the SOI substrate.
摘要:
A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region. The compressive layer also overlies the gate electrode finger portions, and the tensile layer is disposed adjacent the transverse edge of the active region.
摘要:
A silicon on insulator (SOI) device and methods for fabricating such a device are provided. The device includes an MOS capacitor coupled between voltage busses and formed in a monocrystalline semiconductor layer overlying an insulator layer and a semiconductor substrate. The device includes at least one electrical discharge path for discharging potentially harmful charge build up on the MOS capacitor. The MOS capacitor has a conductive electrode material forming a first plate of the MOS capacitor and an impurity doped region in the monocrystalline silicon layer beneath the conductive electrode material forming a second plate. A first voltage bus is coupled to the first plate of the capacitor and to an electrical discharge path through a diode formed in the semiconductor substrate and a second voltage bus is coupled to the second plate of the capacitor.
摘要:
A method of manufacturing a semiconductor device includes providing a strained-silicon semiconductor layer over a silicon germanium layer, and partially removing a first portion of the strained-silicon layer. The strained-silicon layer includes the first portion and a second portion, and a thickness of the second portion is greater than a thickness of the first portion. Initially, the first and second portions of the strained-silicon layer initially can have the same thickness. A p-channel transistor is formed over the first portion, and a n-channel transistor is formed over the second portion. A semiconductor device is also disclosed.
摘要:
A silicon on insulator (SOI) device and methods for fabricating such a device are provided. The device includes an MOS capacitor coupled between voltage busses and formed in a monocrystalline semiconductor layer overlying an insulator layer and a semiconductor substrate. The device includes at least one electrical discharge path for discharging potentially harmful charge build up on the MOS capacitor. The MOS capacitor has a conductive electrode material forming a first plate of the MOS capacitor and an impurity doped region in the monocrystalline silicon layer beneath the conductive electrode material forming a second plate. A first voltage bus is coupled to the first plate of the capacitor and to an electrical discharge path through a diode formed in the semiconductor substrate and a second voltage bus is coupled to the second plate of the capacitor.