摘要:
A switch circuit is provided. The switch circuit may include a first transistor having a source terminal to accept an input signal, a drain terminal to provide an output signal, and a gate; a power supply providing a gate voltage. The switch circuit may also include a circuit to couple a switch signal to the gate, wherein the circuit turns the first transistor ‘off’ for all values of the input signal when the switch signal is ‘low.’ A programmable gain amplifier (PGA) is also provided. The PGA may include an input stage having an input node to couple an input signal, and an output node to provide a gate signal, at least a first gain stage including a resistor and a switch circuit as above. A differential gain amplifier may be included to provide an output signal from the gain signal.
摘要:
A switch circuit is provided. The switch circuit may include a first transistor having a source terminal to accept an input signal, a drain terminal to provide an output signal, and a gate; a power supply providing a gate voltage. The switch circuit may also include a circuit to couple a switch signal to the gate, wherein the circuit turns the first transistor ‘off’ for all values of the input signal when the switch signal is ‘low.’ A programmable gain amplifier (PGA) is also provided. The PGA may include an input stage having an input node to couple an input signal, and an output node to provide a gate signal, at least a first gain stage including a resistor and a switch circuit as above. A differential gain amplifier may be included to provide an output signal from the gain signal.
摘要:
A power transistor and a power converter are disclosed that may improve the on-resistance and corresponding silicon area of a power transistor. The power transistor may comprise a drain, a source, and a channel therebetween divided into a plurality of transistor stripes, the plurality of transistor stripes being grouped in a plurality of different groups. The power transistor may further comprise a first top metal associated with one of the drain and the source, and a second top metal associated with the other of the drain and the source. The second top metal includes at least one portion that is coupled to different groups of transistor stripes. A related method for determining a layout topology of a power transistor is also disclosed.
摘要:
Temperature-compensation network embodiments are provided to generate compensation signals which may be useful in improving the performance of a variety of important systems. An embodiment includes a limit current mirror configured to provide a limit current, a current generator to provide a slope current whose magnitude varies with temperature, and an output current mirror positioned to receive the limit current and the slope current and configured to provide a compensation current. In addition, a floating voltage reference is provided for use in various networks which include the temperature-compensation networks. The temperature-compensation networks may be used to improve performance in systems such as a panel driver which provides turn-on and turn-off gate voltages to transistors in liquid crystal displays.
摘要:
A level-shifting circuit with reduced shoot-through current includes an output circuit comprising high-voltage devices with a pull-up circuit configured for pulling up a voltage on an output signal to a high voltage responsive to a high-side control signal. The output circuit may also include a pull-down circuit configured for pulling down the voltage on the output signal to a low voltage in responsive to a low-side control signal. The level-shifting circuit can also include a high-side inverting buffer operably coupled between an edge-controlled signal and the high-side control signal, and a low-side buffer configured for driving the low-side control signal responsive to an input signal. The level-shifting circuit may also include an edge-control buffer operably coupled between the input signal and the high-side inverting buffer and configured to generate the edge-controlled signal with a slow rise time relative to a fall time.
摘要:
Error amplifier structures are provided to generate an error signal in response to the difference between an input signal (e.g., a feedback current) and a reference signal (e.g., a bias current). Amplifier embodiments generally include a reference generator and a differencing amplifier. In at least one embodiment, the error generator is arranged to generate first and second bias voltages that correspond to the bias current. In at least one embodiment, the differencing amplifier is configured to provide a reference current to an output node in response to the first bias voltage, provide a feedback current to the output node in response to the second bias voltage, and generate an error current in response to a voltage at the output node. The error amplifier structures are suited for use in various systems such as negative switching regulators.
摘要:
A semiconductor switch comprises a PNPN structure arranged to provide an SCR-like functionality, and a MOS gate structure, preferably integrated on a common substrate. The switch includes ohmic contacts for the MOS gate, and for the cathode and gate regions of the PNPN structure; the anode contact is intrinsic. A fixed voltage is typically applied to an external node. The MOS gate structure allows current to be conducted between the external node and the intrinsic anode when on, and the PNPN structure conducts the current from the anode to the cathode when an appropriate voltage is applied to the gate contact. Regenerative feedback keeps the switch on once it begins to conduct. The MOS gate inhibits the flow of current between the external node and anode—and thereby turns off the switch—when off. When on, the MOS gate's channel resistance serves as a ballast resistor.
摘要:
Successive approximation Analog-to-digital converters (ADCs) and related methods are disclosed. A successive approximation ADC includes a comparator with a comparator output and inputs coupled to a common model signal and a compare input. Control logic generates one or more control signals responsive to the comparator output. A capacitor array includes first sides of capacitors operably coupled to an array output. The capacitor arrays selectively couples each of second sides of the capacitors to an analog input signal and one or more input reference signals responsive to the one or more control signals. A voltage limiter is operably coupled between the array output and the compare input of the comparator and limits a voltage on the compare input to within a predefined range relative to the array output. The successive approximation ADC may also be configured differentially with a second comparator and a second voltage limiter.
摘要:
Energy sharing circuits and related methods are disclosed herein. A high voltage can be selectively coupled to a first source line and a low voltage can be selectively coupled to a second source line during a first time period. During a subsequent time period, a first coupling switch is activated to inductively couple the first source line to the second source line and diode block the second source line from the first source line. During a subsequent time period, the low voltage is selectively coupled to the first source line and the high voltage is selectively coupled to the second source line. During a subsequent time period, a second coupling switch is activated to inductively couple the second source line to the first source line and diode block the first source line from the second source line.
摘要:
An analog-to-digital converter with comparators with multiple, inter-coupled, outputs is provided, which may be also called a Benorion Analog-to-Digital Converter (ADC) or a Benorion Converter. The analog-to-digital converter includes a plurality of comparators operably coupled for receiving an analog input signal and configured for comparing the analog input signal with a plurality of voltage reference signals. Each comparator of the plurality is configured for generating a plurality of comparator outputs comprising a primary comparator output, and at least one additional comparator output selected from the group consisting of positive comparator outputs and negative comparator. The analog-to-digital converter further includes a plurality of composite outputs, each composite output of the plurality comprising a combination of the primary comparator output from a corresponding comparator of the plurality and at least one additional comparator output from at least one additional comparator of the plurality of comparators. Other comparators and methods are provided.