摘要:
The present invention provides a semiconductor device. The semiconductor device comprises contact plugs that comprise a first contact plug formed by a first barrier layer arranged on the source and drain regions and a tungsten layer arranged on the first barrier layer; and second contact plugs comprising a second barrier layer arranged on both of the metal gate and the first contact plug and a conductive layer arranged on the second barrier layer. The conductivity of the conductive layer is higher than that of the tungsten layer. A method for forming the semiconductor device is also provided. The present invention provides the advantage of enhancing the reliability of the device when using the copper contact technique.
摘要:
The present invention provides a semiconductor device. The semiconductor device comprises contact plugs that comprise a first contact plug formed by a first barrier layer arranged on the source and drain regions and a tungsten layer arranged on the first barrier layer; and second contact plugs comprising a second barrier layer arranged on both of the metal gate and the first contact plug and a conductive layer arranged on the second barrier layer. The conductivity of the conductive layer is higher than that of the tungsten layer. A method for forming the semiconductor device is also provided. The present invention provides the advantage of enhancing the reliability of the device when using the copper contact technique.
摘要:
There is provided a CMOSFET device with threshold voltage controlled by means of interface dipoles and a method of fabricating the same. A cap layer, for example a very thin layer of poly-silicon, amorphous silicon, or SiO2, is interposed inside high-k gate dielectric layers of the CMOSFET device, and the threshold voltage is adjusted by means of the interface dipoles formed by the cap layer inside the high-k gate dielectric layers. According to the present invention, it is possible to effectively optimize the threshold voltage of the CMOSFET device without significantly increasing EOT thereof.
摘要:
There is provided a CMOSFET device with a threshold voltage controlled by means of its gate stack configuration and a method of fabricating the same. The CMOSFET device comprises: a semiconductor substrate; an interface layer grown on the silicon substrate; a first high-k gate dielectric layer deposited on the interface layer; a very thin metal layer deposited on the first high-k gate dielectric layer; a second high-k gate dielectric layer deposited on the metal layer; and a gate electrode layer deposited on the second high-k gate dielectric layer. According to to the present invention, the very thin metal layers are deposited between the high-k gate dielectric layers for NMOS and PMOS devices respectively, such that a flat band voltage of the device is adjusted by means of positive or negative charges generated by the metal layers inside the high-k gate dielectric layers, and thus the threshold voltage of the device is controlled. Thus, it is possible not only to is enhance interface dipoles between the high-k dielectric layers and the SiO2 interface layer, but also to well control types and amounts of fixed charges inside the high-k gate dielectric layers, so as to effectively control the threshold voltage of the device.
摘要:
The invention provides a graphene device structure and a method for manufacturing the same, the device structure comprising a graphene layer; a gate region in contact with the graphene layer; semiconductor doped regions formed in the two opposite sides of the gate region and in contact with the graphene layer, wherein the semiconductor doped regions are isolated from the gate region; a contact formed on the gate region and contacts formed on the semiconductor doped regions. The on-off ratio of the graphene device is increased through the semiconductor doped regions without increasing the band gap of the graphene material, i.e., without affecting the mobility of the material or the speed of the device, thereby increasing the applicability of the graphene material in CMOS devices.
摘要:
There is provided a CMOSFET device with threshold voltage controlled by means of interface dipoles and a method of fabricating the same. A cap layer, for example a very thin layer of poly-silicon, amorphous silicon, or SiO2, is interposed inside high-k gate dielectric layers of the CMOSFET device, and the threshold voltage is adjusted by means of the interface dipoles formed by the cap layer inside the high-k gate dielectric layers. According to the present invention, it is possible to effectively optimize the threshold voltage of the CMOSFET device without significantly increasing EOT thereof.
摘要:
There is provided a CMOSFET device with a threshold voltage controlled by means of its gate stack configuration and a method of fabricating the same. The CMOSFET device comprises: a semiconductor substrate; am interface layer grown on the silicon substrate; a first high-k gate dielectric layer deposited on the interface layer; a very thin metal layer deposited on the first high-k gate dielectric layer; a second high-k gate dielectric layer deposited on the very thin metal layer; and a gate electrode layer deposited on the second high-k gate dielectric layer.
摘要:
The present invention relates to a method of manufacturing a semiconductor device, wherein the method comprises: providing a substrate; forming a source region, a drain region, a dummy gate structure, and a gate dielectric layer on the substrate, wherein the dummy gate structure is between the source region and the drain region on the substrate, and the gate dielectric layer is between the substrate and the dummy gate structure; annealing the source region and the drain region; removing the dummy gate structure to form an opening; implanting dopants into the substrate from the opening to form a steep retrograded well; annealing to activate the dopants; and forming a metal gate on the gate dielectric layer by deposition.
摘要:
The invention provides a graphene device structure and a method for manufacturing the same, the device structure comprising a graphene layer; a gate region in contact with the graphene layer; semiconductor doped regions formed in the two opposite sides of the gate region and in contact with the graphene layer, wherein the semiconductor doped regions are isolated from the gate region; a contact formed on the gate region and contacts formed on the semiconductor doped regions. The on-off ratio of the graphene device is increased through the semiconductor doped regions without increasing the band gap of the graphene material, i.e., without affecting the mobility of the material or the speed of the device, thereby increasing the applicability of the graphene material in CMOS devices.
摘要:
The present invention relates to a method of manufacturing a semiconductor device, wherein the method comprises: providing a substrate; forming a source region, a drain region, a dummy gate structure, and a gate dielectric layer on the substrate, wherein the dummy gate structure is between the source region and the drain region on the substrate, and the gate dielectric layer is between the substrate and the dummy gate structure; annealing the source region and the drain region; removing the dummy gate structure to form an opening; implanting dopants into the substrate from the opening to form a steep retrograded well; annealing to activate the dopants; and forming a metal gate on the gate dielectric layer by deposition.