摘要:
Cleansing bar compositions having high water content comprise: (a) at least about 15%, by weight of the composition, of water; (b) from about 40% to about 84%, by weight of the composition, of soap; and (c) from about 1% to about 15%, by weight of the composition, of inorganic salt. The bar compositions further comprise a component selected from the group consisting of carbohydrate structurant, free fatty acid, synthetic surfactants, and mixtures thereof. The bar compositions preferably have a Water Activity (“Aw”) of less than about 0.95, preferably less than about 0.90, and more preferably less than about 0.85. The bar compositions are preferably manufactured by a milling process.
摘要:
Cleansing bar compositions having high water content comprise: (a) at least about 15%, by weight of the composition, of water; (b) from about 40% to about 84%, by weight of the composition, of soap; and (c) from about 1% to about 15%, by weight of the composition, of inorganic salt. The bar compositions further comprise a component selected from the group consisting of carbohydrate structurant, humectant, free fatty acid, synthetic surfactants, and mixtures thereof. The bar compositions preferably have a Water Activity (“Aw”) of less than about 0.95, preferably less than about 0.90, and more preferably less than about 0.85. The bar compositions are preferably manufactured by a milling process.
摘要:
Cleansing bar compositions having high water content comprise: (a) at least about 15%, by weight of the composition, of water; (b) from about 40% to about 84%, by weight of the composition, of soap; and (c) from about 1% to about 15%, by weight of the composition, of inorganic salt. The bar compositions further comprise a component selected from the group consisting of carbohydrate structurant, humectant, free fatty acid, synthetic surfactants, and mixtures thereof. The bar compositions preferably have a Water Activity (“Aw”) of less than about 0.95, preferably less than about 0.90, and more preferably less than about 0.85. The bar compositions are preferably manufactured by a milling process.
摘要:
Cleansing bar compositions having high water content comprise: (a) at least about 15%, by weight of the composition, of water; (b) from about 40% to about 84%, by weight of the composition, of soap; (c) from about 1% to about 30%, by weight of the composition, of carbohydrate structurant; and (d) from about 0.001% to about 10%, by weight of the composition, of cationic polymer. The bar compositions are preferably manufactured by a milling process.
摘要:
Four (4) methods and systems that utilize these methods are claimed in the present invention for intelligently detecting pipeline small leaks, thefts, and their details.In the Energy Flow Line Method, the measured flow data at both ends of the pipeline will be monitored and analyzed. If flow changes that meet the criteria are identified, a leak or a theft is detected. The energy wave front speed is introduced and the unsteady flow mathematical model of the subject pipeline is utilized to calculate leak details.In the Filtered Pressure Waves Method, the measured pressure data at both ends of the pipeline will be monitored and analyzed. After filtering, only those pressure waves that are not originated at the ends of the pipeline will be selected as candidates. For each computation step, consecutively apply the 2 travelling time windows template 1 and template 2 to those candidates, and process those candidates within each window. Leaks, thefts and their details (except for leaked amount) can be obtained if the detected leak locations meet the criteria, even when the fluid is stagnant for some time.The Enhanced Filtered Pressure Waves Method, as the name suggests, is the enhanced version of the Filtered Pressure Waves Method if the fluid is not stagnant for some time. The essential part of the Energy Flow Line Method is used to extend the function not only to provide the leaked amount, but also to verify the leak and the leak location in order to avoid sending false alarms. The measured flow data at the outlet end of the pipeline is also monitored and the unsteady flow mathematical model of the subject pipeline is utilized. If the fluid is stagnant for some time, the leaked amount will be calculated without measured data to be compared. The estimated leak location will be provided with a search range.In the Mutual Confirmation Method, essential parts of the above 3 methods are utilized to extend the capability and to confirm each finding. If any result that contradicts the solution is identified, find a new one that fits. By providing the solution that is mutually confirmed with 2 sets of leak details, sending false alarms can be avoided. This method is particularly developed to solve some issues in the real time monitoring applications, especially in SCADA environments, to have shorter calculation time. The unsteady flow mathematical model of the subject pipeline is indispensable for this method. If the fluid is stagnant for some time, the leaked amount will be calculated without measured data to be compared. Also the estimated leak location will be provided with a search range.The present invention is suitable for most pipeline applications, including very long pipelines (for instance, over 200 km), existing pipelines (with min or no modification on existing sensor groups), and pipelines that are shut for some time (excluding using the Energy Flow Line Method), and easily used as a cross checking tool to other pipelines and other online leak detection systems. The fluids in pipelines can be gases, liquids, and multi-phase fluids.
摘要:
A self-charging power pack (300) includes a cathode (312) and an anode (310) that is spaced apart from the cathode (312). An electrolyte (318) is disposed between the anode (310) and the cathode (312). A piezoelectric ion transport layer (322) is disposed between the anode (310) and the cathode (312). The piezoelectric ion transport layer (322) has a piezoelectric property that generates a piezoelectric field when a mechanical force is applied thereto. The piezoelectric field causes transportation of ions in the electrolyte (318) through the piezoelectric ion transport layer (322) towards the anode (310).
摘要:
A system that indicates the presence or absence of microorganisms in fluid food products. The system has a bottle for receiving sample to be tested. The bottle has a sensor that will monitor and detect changes in at least one sample parameter, but no additives that contain nutrients that support microbial growth. The bottle is placed in an incubator and the sensor in the bottle is monitored for changes. The incubator is programed so that, if the sensor detects that the value of the monitored parameter has reached a certain value, then the sample is determined to be positive for microbial growth.
摘要:
Technologies are generally described for an enhanced Quantized Congestion Notification (QCN) congestion control approach, referred to as Fair QCN (FQCN) for enhancing fairness of multiple flows sharing link capacity in a high bandwidth, low latency data center network. QCN messages may be fed back to flow sources (e.g., servers) which send packets with a sending rate over their share of the bottleneck link capacity. By enabling the flow sources to regulate their data traffic based on the QCN messages from a congestion control component, the queue length at the bottleneck link may converge to an equilibrium queue length rapidly and TCP throughput performance may be enhanced substantially in a TCP incast circumstance.
摘要:
An assembly includes optical fibers each having a waveguide core, a photonic integrated circuit (IC) that includes in-plane waveguides corresponding to the optical fibers, and a substrate bonded to the photonic IC with grooves that support the optical fibers. The substrate and photonic IC can have metal bumps that cooperate to provide mechanical bonding and electrical connections between the substrate and photonic IC. Portions of the optical fibers supported by the substrate grooves can define flat surfaces spaced from the optical fiber cores. The photonic IC can include passive waveguide structures with a first coupling section that interfaces to the flat surface of a corresponding optical fiber (for evanescent coupling of optical signals) and a second coupling section that interfaces to a corresponding in-plane waveguide (for adiabatic spot-size conversion of optical signals).