摘要:
An embodiment of the invention provides a method of detecting the position(s) where sensor(s) are activated on an interactive screen using sparse-activation compressive sensing. Sparse-activation compressive sensing makes use of the situation where the number of simultaneously activated sensors is substantially smaller than the number of sensors (nodes). Because the number of simultaneously activated sensors is substantially smaller than the number of sensors, the number of measurements required for determining which sensors are activated may also be reduced. Because fewer measurements are required when compared with full-scan techniques, less circuitry and power is required to detect the location(s) of activated sensors on an interactive screen.
摘要:
For protecting a speaker, an input signal is received and filtered into component signals. A sum of the component signals is approximately equal to the input signal. The component signals include at least first and second component signals. A perceived loudness to a human from the speaker is more sensitive to the first component signal than to the second component signal. A temperature of the speaker is estimated. In response to the estimated temperature, the second component signal is scaled. An output signal is output to the speaker in response to the first component signal and the scaled second component signal.
摘要:
An embodiment of the invention provides a method of detecting the position(s) where sensor(s) are activated on an interactive screen using sparse-activation compressive sensing. Sparse-activation compressive sensing makes use of the situation where the number of simultaneously activated sensors is substantially smaller than the number of sensors (nodes). Because the number of simultaneously activated sensors is substantially smaller than the number of sensors, the number of measurements required for determining which sensors are activated may also be reduced. Because fewer measurements are required when compared with full-scan techniques, less circuitry and power is required to detect the location(s) of activated sensors on an interactive screen.
摘要:
System and method for reducing interference to existing devices. A preferred embodiment comprises specifying a frequency range for a set of dummy signals, specifying a clipping function to ensure that the set of dummy signals do not exceed a maximum power constraint, incorporating a least squares solution for computing the set of dummy signals into the clipping function, and iterating the clipping function until a terminating condition is reached. The use of the clipping function limits the magnitude of the dummy signals, to ensure that dummy signals do not exceed a maximum power constraint.
摘要:
A number of basic equalization and demodulation structures have been shown to be appropriate for DMT systems depending on the channel, noise, and system parameters. These include single path, dual path, oversampled, and double rate structures. Using the fundamental computation units of two TEQs (FIR filters) and two FFTs, in conjunction with simple delays, downsampling and routing, single path, dual path, oversampled and double rate equalization structures can be realized from a common equalization structure.
摘要:
A method of selecting an intermediate frequency (fIF) is disclosed (FIG. 7). The method includes measuring a first signal quality (704) on a first channel at a first intermediate frequency. The method further includes measuring a second signal quality (706) on the first channel at a second intermediate frequency. The intermediate frequency with the best signal quality is selected (710).
摘要:
By allowing the block rate to vary, the existing Asymmetric Digital Subscriber Line (ADSL) system is modified to better address extended reach and higher data rates. A method is disclosed for providing improved reach from the ADSL standard by reducing the block rate from the ADSL standard and providing improved data rate for short loops by increasing the block rate from the ADSL standard.
摘要:
A dual path equalization structure is used to equalize DMT systems operating over channels in which different impairments dominate the performance of different parts of the channel. Two TEQ/DFT structures are used to process the received signal, each optimized for a different part of the channel. The outputs of the two paths are combined with appropriate frequency-domain equalization to achieve an overall equalization architecture which is better optimized for the whole channel.
摘要:
A method of selecting an intermediate frequency (fIF) is disclosed (FIG. 7). The method includes measuring a first signal quality (704) on a first channel at a first intermediate frequency. The method further includes measuring a second signal quality (706) on the first channel at a second intermediate frequency. The intermediate frequency with the best signal quality is selected (710).