Abstract:
A circuit includes a first node, a second node, a first current mirror circuit, and a second current minor circuit. The first current mirror circuit has a reference end and a mirrored end. The reference end of the first current minor circuit is coupled to the first node, and the mirrored end of the first current minor circuit is coupled to the second node. The second current minor circuit has a reference end and a mirrored end. The reference end of the second current minor circuit is coupled to the second node, and the mirrored end of the second current minor circuit is coupled to the first node.
Abstract:
A static random access memory (SRAM) cell includes a pair of cross-coupled inverters having a first node and a second node. A first transistor is coupled between the first node and a first bit line. A second transistor is coupled between the second node and a second bit line. A third transistor is coupled with the first node. The third transistor has a threshold voltage that is higher than that of a fourth transistor of the pair of cross-coupled inverters by about 10% or more. A fifth transistor is coupled between the third transistor and a third bit line
Abstract:
A SRAM system includes: a SRAM cell array coupled between high and low supply nodes, a difference therebetween defining a data retention voltage (VDR) for a low power data retention mode; a main power switch coupling one of high and low supply nodes to a main power supply and disconnecting the one high and low supply nodes from the main power supply during the low power data retention mode; a monitor cell including a SRAM cell preloaded with a data bit and configured for data destruction responsive to a reduction in VDR before data destruction occurs in the SRAM cell array; and a clamping power switch responsive to data destruction in the monitor cell to couple the one of the high and low supply nodes to the main power supply.
Abstract:
A static random access memory (SRAM) cell includes a pair of cross-coupled inverters having a first node and a second node. A first transistor is coupled between the first node and a first bit line. A second transistor is coupled between the second node and a second bit line. A third transistor is coupled with the first node. The third transistor has a threshold voltage that is higher than that of a fourth transistor of the pair of cross-coupled inverters by about 10% or more. A fifth transistor is coupled between the third transistor and a third bit line
Abstract:
A memory assist apparatus includes a detection circuit and a compensation circuit. The detection circuit is configured to provide a detection signal indicating whether a bit line configured to provide read access to a data bit stored at a memory bit cell has a voltage below a predetermined threshold. The compensation circuit is configured to pull down the voltage of the bit line if the detection signal indicates that the voltage of the bit line is below the predetermined threshold.
Abstract:
A circuit comprises a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, and a fourth NMOS transistor. The PMOS transistors and the NMOS transistors are configured to provide a first voltage reference node having a first reference voltage and a second voltage reference node having a second reference voltage. The first reference voltage and the second reference voltage serve as a first reference voltage and a second reference voltage for a memory cell, respectively.
Abstract:
A keeper of an integrated circuit includes a first transistor having a first gate being coupled with an output end of an inverter. A second transistor is coupled with the first transistor in series. The second transistor has a second gate being coupled with an input end of the inverter.
Abstract:
A circuit includes a first node, a second node, a memory cell, a first data line, a second data line, and a write driver. The memory cell is coupled to the first node and the second node and powered by a first voltage at the first node and a second voltage at the second node. The first data line and the second data line are coupled to the memory cell. The write driver has a third node carrying a third voltage less than the first voltage during a write operation. The write deriver is coupled to the first data line and the second data line and configured to, during a write operation, selectively coupling one of the first data line and the second data line to the third node and coupling the other one of the first data line and the second data line to the first node.
Abstract:
A representative circuit device includes a local control circuit having a level shifter, wherein in response to receipt of a first address signal the level shifter shifts the first address signal from a first voltage level to a second voltage level, providing a level shifted first address signal; and a word-line driver having at least one input for receiving a plurality of address signals, wherein the at least one input includes a first input that is coupled to the local control circuit to receive the level shifted first address signal, and an output that is electrically coupled to a word line of a memory cell array.
Abstract:
A semiconductor memory includes first and second memory storage latches each including first and second ports. A first pair of bit lines is coupled to the first ports, and a second pair of bit lines is coupled to the second ports. The first and second pairs of bit lines are twisted between the first and second memory storage latches. A first sense amplifier is coupled to the first pair of bit lines for outputting data, and a second sense amplifier is coupled to the second pair of bit lines for outputting an intermediate data signal. Output logic circuitry is coupled to an output of the second sense amplifier and is configured to output data based on the intermediate data signal and a control signal that identifies if the data is being read from the first memory storage latch or from the second memory storage latch.