摘要:
Immunogenic compositions comprising partially glycosylated viral glycoproteins for use as vaccines against viruses are provided. Vaccines formulated using mono-, di-, or tri-glycosylated viral surface glycoproteins and polypeptides provide potent and broad protection against viruses, even across strains. Pharmaceutical compositions comprising monoglycosylated hemagglutinin polypeptides and vaccines generated therefrom and methods of their use for prophylaxis or treatment of viral infections are disclosed. Methods and compositions are disclosed for influenza virus HA, NA and M2, RSV proteins F, G and SH, Dengue virus glycoproteins M or E, hepatitis C virus glycoprotein E1 or E2 and HIV glycoproteins gp120 and gp41.
摘要:
Immunogenic compositions comprising partially glycosylated viral glycoproteins for use as vaccines against viruses are provided. Vaccines formulated using mono-, di-, or tri-glycosylated viral surface glycoproteins and polypeptides provide potent and broad protection against viruses, even across strains. Pharmaceutical compositions comprising monoglycosylated hemagglutinin polypeptides and vaccines generated therefrom and methods of their use for prophylaxis or treatment of viral infections are disclosed. Methods and compositions are disclosed for influenza virus HA, NA and M2, RSV proteins F, G and SH, Dengue virus glycoproteins M or E, hepatitis C virus glycoprotein E1 or E2 and HIV glycoproteins gp120 and gp41.
摘要:
A thin film transistor includes a channel layer of a specific shape, a thermal gradient inducer body, a gate insulating film, a gate electrode and an interlayer insulating film, a source electrode and a drain electrode. The channel layer is formed on a substrate. The channel layer has a nucleation region and a crystal end. The thermal gradient inducer body partially circumscribes the channel layer. The gate insulating film is formed on the substrate, and the channel layer is at least partially covered with the gate insulating film. The gate electrode is formed on the gate insulating film. The interlayer insulating film is formed on the gate insulating film, and the gate electrode is at least partially covered with the interlayer insulating film. The source electrode and the drain electrode are formed on the interlayer insulating film, passed through the gate insulating film and the interlayer insulating film, and electrically connected to the channel layer.
摘要:
The present invention improves the quality of the TFT structure by avoiding photo-induced current, and lowers manufacturing costs by decreasing the number of masks required in the process, wherein the former is achieved by the stacked structure including a gate layer, an insulation layer, an amorphous silicon layer and an ohmic contact layer, and the latter is achieved by using the stacked structure as a mask and by exposing the substrate from the back surface.
摘要:
A method includes exposing a photo-resist layer using a first exposure machine that has a first resolution to cause the photo-resist layer to have an exposed portion and an un-exposed portion. The photo-resist layer is exposed using a second exposure machine that has a second resolution to further expose the un-exposed portion of the photo-resist layer, the first resolution being different from the second resolution.
摘要:
The present invention improves the quality of the TFT structure by avoiding photo-induced current, and lowers manufacturing costs by decreasing the number of masks required in the process, wherein the former is achieved by the stacked structure including a gate layer, an insulation layer, an amorphous silicon layer and an ohmic contact layer, and the latter is achieved by using the stacked structure as a mask and by exposing the substrate from the back surface.
摘要:
A thin film transistor includes a channel layer of a specific shape, a thermal gradient inducer body, a gate insulating film, a gate electrode and an interlayer insulating film, a source electrode and a drain electrode. The channel layer is formed on a substrate. The channel layer has a nucleation region and a crystal end. The thermal gradient inducer body partially circumscribes the channel layer. The gate insulating film is formed on the substrate, and the channel layer is at least partially covered with the gate insulating film. The gate electrode is formed on the gate insulating film. The interlayer insulating film is formed on the gate insulating film, and the gate electrode is at least partially covered with the interlayer insulating film. The source electrode and the drain electrode are formed on the interlayer insulating film, passed through the gate insulating film and the interlayer insulating film, and electrically connected to the channel layer.
摘要:
An overload regulating structure for trackball device includes a base, a top cover, a ball, a circuit board, a plurality of rotatable shafts and disks, and an overload regulator. The ball is three-point supported in the base between the rotatable shafts and the overload regulator. When the ball is subject to an overload, springs in the overload regulator are compressed, allowing the ball to sink into a locating recess in the base and be restricted from rotating freely and thereby protected against the overload. When the ball is released from the overload, the springs in the overload regulator elastically push the ball to the original three-point supported position again.