Abstract:
An epoxy based adhesive composition contains: (i) a barbituric acid-modified bismaleimide; (ii) an epoxy resin selected from the group consisting of tetraglycidylmethylenedianiline, diglycidyl ortho-phthalate, diglycidyl ether of bisphenol A, polyglycidyl ether of novolac, and epoxy cresol novolac; (iii) an elastomer such as a carboxylated acrylontrile rubber containing between 19 and 41 wt % of acrylontrile; (v) a hardening agent and (vi) a catalyst.
Abstract:
A crystalline silicon based solar cell module comprising: (a) a crystalline silicon based solar cell array formed by interconnecting a plurality of crystalline silicon based solar cells with an interconnect; (b) a hot melt adhesive applied above and below the interconnect to reduce mechanical and thermal stress between the interconnect and the crystalline silicon based solar cells. The hot melt adhesive can be an ethylene-polymer along with a variety of additives such as oxidation inhibitor, UV stabilizer, and UV absorber.
Abstract:
An ink jet printing medium is disclosed. It contains (a) a substrate; (b) an ink absorption layer; and (c) a reinforcement layer sandwiched between said substrate and said ink absorption layer. The reinforcement layer, which is provided at a thickness about 5% to 100% of a thickness of said ink absorption layer, comprises: (a) a carboxylated acrylonitrile rubber at about 7 to 25 wt %; (b) an epoxy resin containing at least two epoxy groups, about 45 to 70 wt %; (c) a hardener containing at least two functional groups, provided at an equivalent ratio of between about 0.9 and 1.1 relative to said epoxy resin; and (d) a catalyst. The inkjet printing medium exhibits excellent adhesion between the ink absorption medium and the substrate, and improved water resistance without affecting printing quality.
Abstract:
A pixel structure, a 3D image/multiple view liquid crystal display device and a method of manufacturing the same are provided. The pixel structure comprises a first substrate, a second substrate being parallel with the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate, a reflecting structure, and a light angle control structure. The reflecting structure is disposed on the first substrate, and the light angle control structure is disposed on the second substrate. The light angle control structure is configured to reflect a light entering from the first substrate to the reflecting structure, and the reflecting structure is configured to reflect the light again such that the light exits from the pixel structure in a predetermined direction.
Abstract:
A keys-integrated LCD panel includes a first conductor arranged on one face of a transistor substrate and a second conductor arranged on one face of a color filter substrate facing toward the transistor substrate. The second conductor meets the first conductor without contacting with the first conductor, and a key district is formed at the position at where the second conductor meets the first conductor. When the key district is touched, the first and the second conductor electrically contact with each other and the signal level at one of the first and the second conductor will change. A controller is provided for detecting any change in the signal level at one of the first and the second conductor. When a change in the signal level is detected, the controller outputs a key signal corresponding to the touched key district.
Abstract:
Bond pad structures are presented. Some embodiments of the structure include a conductive conductor-insulator layer overlying a substrate. The conductive conductor-insulator layer includes a composite region having a conductor sub-region and insulator sub-region, which neighbor each other, and a single material region. The insulator is harder than the conductor.
Abstract:
A method of forming a top gate thin film transistor (TFT). By performing photolithography using a first reticle, a photoresist layer having a thick photoresist layer portion and a thin photoresist layer portion is formed on a silicon layer in an active area. Thus, a channel layer and source/drain regions in a silicon island are defined by the same patterning process. In addition, a gate and an LDD region in the silicon island are defined by photolithography using a second reticle and a backside exposure process. Accordingly, the top gate TFT fabrication process of the present invention requires only two reticles, and thereby reduces costs.
Abstract:
The present invention relates to a resizable wireless pointing device with a storable receiver. The body housing comprises at least one inner compartment which is located next to the back of a wheel and used for storage of said wireless receiver. A sliding cover, located on the top of said body housing, which slides back and forth along the longitude axis of the housing and subsequently alters the size of the wireless pointing device. A shutter, which rolls up following the sliding of the cover, closes seamlessly the gap area between the body housing and the cover, and integrates into the surface of the wireless pointing device.
Abstract:
A method of forming a color filter on a substrate having pixel driving elements. A substrate having a plurality of light-transmitting areas and active areas is provided. A pixel driving element is formed on the substrate in each active area, wherein an insulation layer is formed between each pixel driving element. A planarization layer is formed on the pixel driving elements and the insulation layer. Part of the planarization layer is removed to form contact holes and openings, wherein the contact holes expose part of the pixel driving elements, and the openings expose the insulation layer in the light-transmitting areas. Color pigment is filled into the openings to form a color filter on the substrate having the pixel driving elements. Transparent pixel electrodes are formed in the contact holes to electrically connect the pixel driving elements, wherein the transparent electrodes extend onto part of the color filter.
Abstract:
A polysilicon thin film transistor (poly-Si TFT) with a self-aligned lightly doped drain (LDD) structure has a transparent insulating substrate; a buffering layer formed on the transparent insulating substrate; a polysilicon layer formed on the buffering layer and having a channel region, an LDD structure surrounding the channel region, and a source/drain region surrounding the LDD structure; a gate insulating layer formed on the polysilicon layer; a gate layer formed on the gate insulating layer and positioned over the channel region; an insulating spacer formed on the sidewall of the gate layer and positioned over the LDD structure; and a subgate gate layer formed on the insulating spacer.