Abstract:
A voltage conversion device capable of enhancing conversion efficiency includes a charge pump for generating output voltage linear to input voltage according to the input voltage, a feedback unit for generating a feedback signal according to the output voltage generated by the charge pump, and a regulating unit for outputting and adjusting the input voltage according to the feedback signal provided by the feedback unit, so as to keep the output voltage unchanged.
Abstract:
A voltage conversion device capable of enhancing conversion efficiency includes a charge pump for generating output voltage linear to input voltage according to the input voltage, a feedback unit for generating a feedback signal according to the output voltage generated by the charge pump, and a regulating unit for outputting and adjusting the input voltage according to the feedback signal provided by the feedback unit, so as to keep the output voltage unchanged.
Abstract:
A voltage conversion device capable of enhancing conversion efficiency includes a charge pump for generating output voltage linear to input voltage according to the input voltage, a feedback unit for generating a feedback signal according to the output voltage generated by the charge pump, and a regulating unit for outputting and adjusting the input voltage according to the feedback signal provided by the feedback unit, so as to keep the output voltage unchanged.
Abstract:
A voltage conversion device capable of enhancing conversion efficiency includes a charge pump for generating output voltage linear to input voltage according to the input voltage, a feedback unit for generating a feedback signal according to the output voltage generated by the charge pump, and a regulating unit for outputting and adjusting the input voltage according to the feedback signal provided by the feedback unit, so as to keep the output voltage unchanged.
Abstract:
A charge recycling circuit is configured to recycle charges which are discharged by a driving circuit during a discharge period and provide the recycled charges for charging the driving circuit during a charge period. Power consumption in the driving circuit may thus be reduced.
Abstract:
An LED illuminant driving circuit and an automatic brightness compensation method thereof are provided herein. The automatic brightness compensation method includes: providing a target value; detecting an operation period of a pulse of an output of the LED illuminant driving circuit, the pulse is adapted to an LED illuminant for making the light emitting; deciding a peak value according to the target value and the operation period; and setting a peak level of the pulse according to the peak value. The LED illuminant driving circuit and the automatic brightness compensation method thereof provides a stable average current/voltage to the LED illuminant and avoids brightness variations of the light emitting.
Abstract:
A method and an apparatus for stabilizing output from a Phase Lock Loop (PLL) and the PLL thereof is disclosed. The method mainly relates to enabling the control voltage of a voltage control oscillator VCO in the PLL remained unchanged by means of turning off a charge-discharge current source of a charge pump in a PLL in response to a detected reference signal lower than a default value. Furthermore, the method enables the pulse frequency output from the VCO no exceeding a default tolerant frequency range in a distance from a desired output frequency. Thus, when the reference signal resumes the original frequency, the PLL can quickly lock the phase and the frequency again.
Abstract:
A charge pump circuit is provided. The charge pump circuit includes a pump unit, first through sixth switches, a fly capacitor and an output capacitor. In a first period, an input voltage and a first voltage charge at least one internal capacitor of the pump unit via a first terminal and a second terminal of the pump unit. In the second period, the internal capacitor of the pump unit provides charges to the fly capacitor via the second switch and generates a first output voltage. In the third period, the fly capacitor supplies the charges to the output capacitor via the fourth switch to generate a second output voltage.
Abstract:
A current source apparatus for reducing interference with noise is provided. The current source apparatus includes a controllable current source and a feedback controller. The controllable current source provides an output current according to a control signal and produces a feedback signal according to the output of the controllable current source. The feedback controller is coupled to the controllable current source for receiving the feedback signal, and the feedback controller adjusts the control signal based on the feedback signal and outputs the control signal for controlling the controllable current source to output a stable output current.
Abstract:
A sample-and-hold circuit including a first switch, a first capacitor and an amplifier is provided. The switch has a first terminal to receive the input signal and transmit it to a second terminal thereof in the sample period. The first terminal of the first capacitor couples to the second terminal of the first switch, and the second terminal of the first capacitor couples to a first voltage for storing the sampling result of the input signal. The amplifier couples to the second terminal of the first switch, wherein the amplifier is disabled in the sample period, and the amplifier is enabled to generate the output signal according to the sampling result in the hold period.