摘要:
Closed loop control may be used to improve uniformity of contact or via critical dimension using chemical mechanical planarization. For example, real-time closed loop control may be used to adjust oxide buffing or over-polishing time in a chemical mechanical planarization process to more uniformly and consistently achieve a target critical dimension of a semiconductor wafer.
摘要:
A polysilicon structure and method of forming the polysilicon structure are disclosed, where the method includes a two-step deposition and planarization process. The disclosed process reduces the likelihood of defects such as voids, particularly where polysilicon is deposited in a trench having a high aspect ratio. A first polysilicon structure is deposited that includes a trench liner portion and a first upper portion. The trench liner portion only partially fills the trench, while the first upper portion extends over the adjacent field isolation structures. Next, at least a portion of the first upper portion of the first polysilicon structure is removed. A second polysilicon structure is then deposited that includes a trench plug portion and a second upper portion. The trench is filled by the plug portion, while the second upper portion extends over the adjacent field isolation structures. The second upper portion is then removed.
摘要:
A polysilicon structure and method of forming the polysilicon structure are disclosed, where the method includes a two-step deposition and planarization process. The disclosed process reduces the likelihood of defects such as voids, particularly where polysilicon is deposited in a trench having a high aspect ratio. A first polysilicon structure is deposited that includes a trench liner portion and a first upper portion. The trench liner portion only partially fills the trench, while the first upper portion extends over the adjacent field isolation structures. Next, at least a portion of the first upper portion of the first polysilicon structure is removed. A second polysilicon structure is then deposited that includes a trench plug portion and a second upper portion. The trench is filled by the plug portion, while the second upper portion extends over the adjacent field isolation structures. The second upper portion is then removed.
摘要:
A conductor removal process is described, which is applied to a substrate that has thereon a plurality of patterns and a blanket conductor layer covering the patterns. An upper portion of the blanket conductor layer entirely over the patterns is oxidized to form a dielectric layer. A CMP step is performed to remove the dielectric layer and a portion of the remaining conductor layer in turn and thereby expose the patterns.
摘要:
A conductor removal process is described, which is applied to a substrate that has thereon a plurality of patterns and a blanket conductor layer covering the patterns. An upper portion of the blanket conductor layer entirely over the patterns is oxidized to form a dielectric layer. A CMP step is performed to remove the dielectric layer and a portion of the remaining conductor layer in turn and thereby expose the patterns.
摘要:
A method for chemical-mechanical polishing two adjacent structures of a semiconductor device is provided. The method for mechanical polishing comprising: (a) providing a semiconductor device comprising a recess formed in a surface thereof, a first layer formed over the surface, and a second layer filled with the recess and formed on the first layer; and (b) substantially polishing the first and second layer with a pad and a substantially inhibitor-free slurry, wherein the pad comprising a corrosion inhibitor of the second layer.
摘要:
A method for chemical-mechanical polishing two adjacent structures of a semiconductor device is provided. The method for mechanical polishing comprising: (a) providing a semiconductor device comprising a recess formed in a surface thereof, a first layer formed over the surface, and a second layer filled with the recess and formed on the first layer; and (b) substantially polishing the first and second layer with a pad and a substantially inhibitor-free slurry, wherein the pad comprising a corrosion inhibitor of the second layer.
摘要:
A method for chemical-mechanical polishing two adjacent structures of a semiconductor device is provided. The method for mechanical polishing comprising: (a) providing a semiconductor device comprising a recess formed in a surface thereof, a first layer formed over the surface, and a second layer filled with the recess and formed on the first layer; and (b) substantially polishing the first and second layer with a pad and a substantially inhibitor-free slurry, wherein the pad comprising a corrosion inhibitor of the second layer.
摘要:
A metal pad formation method and metal pad structure using the same are provided. A wider first pad metal is formed together with a first metal. A dielectric layer is then deposited thereon. A first opening and a second opening are formed in the dielectric layer to respectively expose the first metal and the first pad metal. Then, the first opening is filled by W metal to generate a first via. Finally, a second metal and a second pad metal are formed to respectively cover the first via and the first pad metal to generate the metal pad.
摘要:
A memory cell having a kinked polysilicon layer structure, or a polysilicon layer structure with a top portion being narrower than a bottom portion, may greatly reduce random single bit (RSB) failures and may improve high density plasma (HDP) oxide layer fill-in by reducing defects caused by various impurities and/or a polysilicon layer short path. A kinked polysilicon layer structure may also be applied to floating gate memory cells either at the floating gate structure or the control gate structure.