摘要:
The present invention is a method for integrating an anti-reflection layer and a salicide block. The method comprises the following steps: A substrate is provided that is divided into at least a sensor area and a transistor area, wherein the sensor area comprises a doped region and the transistor area comprises a transistor that includes a gate, a source and a drain; forming a composite layer on the substrate, wherein the composite layer at least also covers both the sensor area and the transistor area, and the composite layer increases the refractive index of light that propagates from the doped region into the composite layer; performing an etching process and a photolithography process to remove part of the composite layer and to let top of the gate, the source and the drain are not covered by the composite layer; and performing a salicide process to let top of the gate, the source and the drain are covered by a silicate. One main characteristic of the invention is that the composite layer can be used as an anti-reflection layer of the sensor area and a salicide block of the transistor region. The composite layer is made of several basic layers and refractive index of any basic layer is different from refractive indexes of adjacent basic layers.
摘要:
A plurality of active pixel sensors are formed on the surface of a semiconductor wafer. The semiconductor wafer comprises a P-type substrate, an active pixel sensor region and a periphery circuit region. A first active pixel sensor block mask (APSB mask) is formed to cover the active pixel sensor region, then at least one N-well on the surface of the semiconductor wafer not covered by the first APSB mask is formed. A second APSB mask and at least one N-well mask are formed to cover the active pixel sensor region and the region outside the P-well region. At least one P-well on the surface of the semiconductor wafer not covered by the second APSB mask and the N-well mask is formed. Finally, at least one photodiode and at least one complementary metal-oxide semiconductor (CMOS) transistor are formed on the surface of the active pixel sensor region.
摘要:
A structure of a CMOS image sensory device is described. A photodiode sensory region and a transistor device region are isolated from each other by an isolation layer formed in the substrate. A gate structure is located on the transistor device region, and a source/drain region is in the transistor device region beside the side of the gate structure. A doped region is in the photodiode sensory region. A self-aligned block is located on the photodiode sensory region and a protective layer is formed on the entire substrate.
摘要:
The present invention is a method for integrating an anti-reflection layer and a salicide block. The method comprises following steps: provide a substrate that is divided into at least a sensor area and a transistor area, wherein the sensor area comprises a doped region and the transistor area comprises a transistor that includes a gate, a source and a drain; forms a composite layer on the substrate, herein the composite layer at least also covers both sensor area and transistor area, and the composite layer increases refractive index of light that propagate from the doped region into the composite layer; performs an etching process and a photolithography process to remove part of the composite layer and to let top of the gate, the source and the drain are not covered by the composite layer; and performs a salicide process to let top of the gate, the source and the drain are covered by a silicate. One main characteristic of the invention is that the composite layer can be used as an anti-reflection layer of the sensor area and a salicide block of the transistor region. The composite layer is made of several basic layers and refractive index of any basic layer is different to refractive indexes of adjacent basic layers.
摘要:
A fabrication method for a CMOS image sensory device is described. An isolation layer is formed in the substrate to isolate a photodiode sensory region and a transistor device region. A gate structure is further formed on the transistor device region, followed by forming concurrently a source/drain region in the transistor device region beside the side of the gate structure and a doped region in the photodiode sensory region. Thereafter, a self-aligned block is formed on the photodiode sensory region, followed by forming a protective layer on the substrate.
摘要:
A process for fabricating a mixed signal integrated circuit on a substrate, wherein the substrate is partially covered with a field oxide layer. An oxide layer is formed over a portion of the substrate, wherein the portion of the substrate is not covered with the field oxide layer. First impurities are implanted into the substrate, wherein the first impurities damage the oxide layer. A buffer layer is formed over the oxide layer. A polysilicon layer is formed over the buffer layer. Second impurities are implanted into the polysilicon layer, wherein the buffer layer prevents the oxide layer form being damaged by the second impurities. The polysilicon layer is etched to remove the polysilicon layer, wherein the buffer layer prevents the oxide layer and the substrate from being etched. The portion of buffer layer and the damaged oxide layer over the substrate are removed. The gate oxide layer is formed over the substrate.
摘要:
A process for etching silicon to form silicon pillars on the etched surfaces, includes treating silicon with an etching solution that includes 5 to 10M HF 0.01 to 0.1M Ag+ ions and 0.02 to 0.2M NO3− ions. Further, NO3− ions in the form of alkali metal, nitric acid or ammonium nitrate salt is added to maintain the concentration of nitrate ions within the above range. The etched silicon is separated from the solution. The process provides pillars, especially for use as the active anode material in lithium ion batteries. The process is advantageous because it uses an etching bath containing only a small number of ingredients whose concentration needs to be controlled and it can be less expensive to operate than previous processes.
摘要翻译:用于在蚀刻表面上蚀刻硅以形成硅柱的方法包括用蚀刻溶液处理硅,所述蚀刻溶液包括5至10M HF 0.01至0.1M Ag +离子和0.02至0.2M NO 3 - 离子。 此外,加入碱金属,硝酸或硝酸铵盐形式的NO 3 - 离子以将硝酸根离子的浓度维持在上述范围内。 蚀刻的硅与溶液分离。 该方法提供了支柱,特别用作锂离子电池中的活性阳极材料。 该方法是有利的,因为它使用仅含有少量成分的蚀刻液,其浓度需要被控制,并且可以比以前的方法操作更便宜。
摘要:
An electrically interconnected mass includes elongated structures. The elongated structures are electrochemically active and at least some of the elongated structures cross over each other to provide intersections and a porous structure. The elongated structures include doped silicon.
摘要:
A multi-selection prescaler for dividing an input signal according to a ratio to obtain a desired frequency. The circuit has of a plurality of logic gates and D-flip-flops: a first frequency divider for receiving an input signal and generating a divided frequency; a second frequency divider connected to the first frequency divider for performing a further frequency division based on a selection switch having a plurality of selection signals and a plurality of AND gates; a module control for performing a logic operation on the selection signals and an external control signal (MC) by OR gates and being connected to the first frequency divider to control the divided frequency of the first frequency divider; and an output selection circuit connected to the second frequency divider for selecting output signal according to the selection signals.
摘要:
Pillared particles of silicon or silicon-comprising material and a method of fabricating the same are disclosed. These particles may be used to create both a composite anode structure with a polymer binder, a conductive additive and a metal foil current collector, and an electrode structure. The structure of the particles overcomes the problems of charge/discharge capacity loss.