Abstract:
A fuel reforming catalyst is fabricated. The catalyst is used in solid oxide fuel cell. By using the catalyst, the hydrogen generation is enhanced with a great reforming ratio. In addition, the catalyst is coking-resistant and will not be broken into powder after a long time of use.
Abstract:
The present disclosure uses a nano-SiO2 powder as a supporter with H2PtCl6 added as an electro-catalyst precursor. A chemical reduction is processed at a high temperature to adhere nano-size Pt ions on the nano-SiO2 powder through reduction. Thus, a nano-Pt catalyst using nano-SiO2 as supporter is manufactured for fuel cells, organic compound reactions and the textile industry.
Abstract:
The present disclosure provides a gas reaction device. Reactions are happened on a fixed bed and/or a slurry bed in four reaction states. Thus, by using the four reaction states, reactions are thoroughly completed with the same catalyst. Or, different reactions are completed with different catalysts for different purposes.
Abstract:
An apparatus is disclosed for controlling the oxidation state of catalyst for use in a fuel cell. The apparatus includes a holder, a working electrode disposed in the holder, an auxiliary electrode located right above the working electrode, a reference electrode disposed in the holder and a power supply connected to all of the electrodes.
Abstract:
A method is disclosed for making Ru—Se and Ru—Se—W catalyst. In the method, carrier is processed with strong acid and poured into first ethylene glycol solution. Ultra-sonication and high-speed stirring are conducted on the first ethylene glycol solution, thus forming carbon paste. The carbon paste is mixed with second ethylene glycol solution containing at least one nanometer catalyst precursor and an additive. High-speed stirring is conducted to form mixture. The mixture is heated so that Ru—Se catalyst is reduced. The mixture is filtered to separate the carrier. Then, the carrier is washed with de-ionized water. Conducting drying and hydrogen reduction are conducted to make the Ru—Se catalyst on the carrier.
Abstract:
A fuel reforming catalyst is fabricated. The catalyst is used in solid oxide fuel cell. By using the catalyst, the hydrogen generation is enhanced with a great reforming ratio. In addition, the catalyst is coking-resistant and will not be broken into powder after a long time of use.
Abstract:
The present disclosure uses a nano-SiO2 powder as a supporter with H2PtCl6 added as an electro-catalyst precursor. A chemical reduction is processed at a high temperature to adhere nano-sized Pt ions on the nano-SiO2 powder through reduction. Thus, a nano-Pt catalyst using nano-SiO2 as supporter is manufactured for fuel cells, organic compound reactions and the textile industry.
Abstract:
An apparatus is disclosed for testing a catalysis electrode of a fuel cell. The apparatus includes a driving module, a loading module, a containing module and an analyzing unit. The containing module includes a hollow threaded bolt, a sleeve and a contact plate. The hollow threaded bolt is operatively connected to driving module. The sleeve receives and is operatively connected to the hollow threaded bolt. The contact plate is located below the hollow threaded bolt in the sleeve. The analyzing unit includes a working electrode, an auxiliary electrode and a reference electrode. The working electrode is connected to the contact plate. The auxiliary electrode includes an end located below the containing module in the loading module. The reference electrode is connected to the loading module.
Abstract:
In the present invention, platinum and alloying metal precursor ions are reduced to platinum alloy particles using specifically prepared reducing agents, under controlled reaction temperature and pH conditions, with uniform dispersion and high uniformity in nano-scale sizes adhered onto carbon nanotubes; besides, the compositions of prepared Pt alloy electrocatalysts can be put under control as desired.
Abstract:
A catalyst-testing apparatus includes a heater, a U-shaped reactor, a gas flow controller, a liquid flow controller, two pressure gauges, a separator and a chromatograph. In use, under control of the gas flow controller, natural gas and air are directed to the U-shaped reactor. Under control of the liquid flow controller, pure water is directed to the U-shaped reactor. The pure water travels down the wall of the U-shaped reactor. The pure water is heated and turned into steam in a front section of the U-shaped reactor. Together with the natural gas and the air, the steam is directed to a catalyst zone in the U-shaped reactor for reaction. With the chromatograph, volumes and compositions of resultant gases are analyzed. Thus, the stability of the performance of the catalyst is tested, and the performance of the catalyst for producing hydrogen by is revealed.