摘要:
An LDMOS transistor with a dummy gate comprises an extended drift region formed over a substrate, a drain region formed in the extended drift region, a channel region formed in the extended drift region, a source region formed in the channel region and a dielectric layer formed over the extended drift region. The LDMOS transistor with a dummy gate further comprises an active gate formed over the channel region and a dummy gate formed over the extended drift region. The dummy gate helps to reduce the gate charge of the LDMOS transistor while maintaining the breakdown voltage of the LDMOS transistor.
摘要:
An LDMOS transistor with a dummy gate comprises an extended drift region formed over a substrate, a drain region formed in the extended drift region, a channel region formed in the extended drift region, a source region formed in the channel region and a dielectric layer formed over the extended drift region. The LDMOS transistor with a dummy gate further comprises an active gate formed over the channel region and a dummy gate formed over the extended drift region. The dummy gate helps to reduce the gate charge of the LDMOS transistor while maintaining the breakdown voltage of the LDMOS transistor.
摘要:
A high voltage (HV) device includes a gate dielectric structure over a substrate. The gate dielectric structure has a first portion and a second portion. The first portion has a first thickness and is over a first well region of a first dopant type in the substrate. The second portion has a second thickness and is over a second well region of a second dopant type. The first thickness is larger than the second thickness. A gate electrode is disposed over the gate dielectric structure. A metallic layer is over and coupled with the gate electrode. The metallic layer extends along a direction of a channel under the gate dielectric structure. At least one source/drain (S/D) region is disposed within the first well region of the first dopant type.
摘要:
An exemplary embodiment of a semiconductor device capable of high-voltage operation includes a substrate with a well region therein. A gate stack with a first side and a second side opposite thereto, overlies the well region. Within the well region, a doped body region includes a channel region extending under a portion of the gate stack and a drift region is adjacent to the channel region. A drain region is within the drift region and spaced apart by a distance from the first side thereof and a source region is within the doped body region near the second side thereof. There is no P-N junction between the doped body region and the well region.
摘要:
An exemplary embodiment of a semiconductor device capable of high-voltage operation includes a substrate with a well region therein. A gate stack with a first side and a second side opposite thereto, overlies the well region. Within the well region, a doped body region includes a channel region extending under a portion of the gate stack and a drift region is adjacent to the channel region. A drain region is within the drift region and spaced apart by a distance from the first side thereof and a source region is within the doped body region near the second side thereof. There is no P-N junction between the doped body region and the well region.
摘要:
A MOSFET includes a semiconductor substrate having a top surface, a body region of a first conductivity type in the semiconductor substrate, and a double diffused drain (DDD) region having a top surface lower than a bottom surface of the body region. The DDD region is of a second conductivity type opposite the first conductivity type. The MOSFET further includes a gate oxide, and a gate electrode separated from the body region by the gate oxide. A portion of the gate oxide and a portion of the gate electrode are below the top surface of the body region.
摘要:
A MOSFET includes a semiconductor substrate having a top surface, a body region of a first conductivity type in the semiconductor substrate, and a double diffused drain (DDD) region having a top surface lower than a bottom surface of the body region. The DDD region is of a second conductivity type opposite the first conductivity type. The MOSFET further includes a gate oxide, and a gate electrode separated from the body region by the gate oxide. A portion of the gate oxide and a portion of the gate electrode are below the top surface of the body region.
摘要:
Semiconductor devices and fabrication methods thereof. The semiconductor device includes a semiconductor substrate with a body region of a first doping type. A gate structure is patterned on the semiconductor substrate. A single spacer is formed on a first sidewall of the gate structure. A body region of a first doping type is formed in the semiconductor substrate adjacent to a second sidewall of the gate structure. A source region of a second doping type is formed on the body region and having an edge aligned with the second sidewall of the gate structure. A drain region of the second doping type is formed on the semiconductor substrate and having an edge aligned with an exterior surface of the single sidewall.
摘要:
The present invention is a radar system for detecting the presence of obstacles. The radar system includes at least one transmitting antenna and at least one receiving antenna. The transmitting antenna receives an input signal and transmits an electromagnetic wave. The electromagnetic wave reflects off an obstacle back to the receiving antenna. The receiving antenna captures the reflected electromagnetic wave and produces an output signal. The output signal is then combined with the local reference signal in a quadrature mixer. The resulting in-phase (I) and quadrature (Q) signals may be further processed and then transmitted to a processing system. The processing system uses a suitable algorithm, e.g., a back projection algorithm, to estimate the type and location of obstacles that reflected the electromagnetic wave. In an exemplary embodiment, the algorithm is adapted to discriminate between different sizes and locations of obstacles in order to determine if there is a hazard. Based on this information, the processing system then communicates with a visual and/or audible warning system in order to alert the driver about the obstacle if it has been determined to be a hazard.
摘要:
A forward-looking radar system adapted to detect and identify buried or near surface objects from a moving ground vehicle has been developed. The system incorporates a radar detection system and in one embodiment is mounted on a ground vehicle. The system is adapted to differentiate common roadway clutter from objects of interest.