摘要:
A circuit having a circuit control terminal, a primary circuit and a protection circuit is provided. The primary circuit includes a primary control terminal and a primary gate oxide of a thickness T1. The primary control terminal is coupled to the circuit control terminal. The protection circuit having a protection control terminal is coupled to the primary circuit. The protection circuit includes a protection gate oxide of a second thickness T2 which is less than T1. The protection gate oxide reduces plasma induced damage in the primary circuit.
摘要:
A method for forming a device is presented. A substrate prepared with a feature having first and second adjacent surfaces is provided. A device layer is formed on the first and second adjacent surfaces of the feature. A first portion of the device layer over the first adjacent surface includes nano-crystals, whereas a second portion of the device layer over the second adjacent surface is devoid of nano-crystals.
摘要:
A method of manufacture of an integrated circuit system includes: providing a second layer between a first layer and a third layer; forming an active device over the third layer; forming the third layer to form an island region underneath the active device; forming the second layer to form a floating second layer with an undercut beneath the island region; and depositing a fourth layer around the island region and the floating second layer.
摘要:
A method of manufacture of an integrated circuit system includes: providing a mesa over a substrate; forming a trench in the substrate adjacent the mesa; forming a second gate and a charge storage material along a trench sidewall; and forming a first gate from the mesa.
摘要:
A method of manufacture of an integrated circuit system includes: providing a second layer between a first layer and a third layer; forming an active device over the third layer; forming the third layer to form an island region underneath the active device; forming the second layer to form a floating second layer with an undercut beneath the island region; and depositing a fourth layer around the island region and the floating second layer.
摘要:
A method for forming a device is presented. A substrate prepared with a feature having first and second adjacent surfaces is provided. A device layer is formed on the first and second adjacent surfaces of the feature. A first portion of the device layer over the first adjacent surface includes nano-crystals, whereas a second portion of the device layer over the second adjacent surface is devoid of nano-crystals.
摘要:
Methods (and semiconductor substrates produced therefrom) of fabricating (n−1) SDOI substrates using n wafers is described. A donor substrate (e.g., silicon) includes a buffer layer (e.g., SiGe) and a plurality of multi-layer stacks formed thereon having alternating stress (e.g., relaxed SiGe) and strain (e.g., silicon) layers. An insulator is disposed adjacent an outermost strained silicon layer. The outermost strained silicon layer and underlying relaxed SiGe layer is transferred to a handle substrate by conventional or known bonding and separation methods. The handle substrate is processed to remove the relaxed SiGe layer thereby producing an SDOI substrate for further use. The remaining donor substrate is processed to remove one or more layers to expose another strained silicon layer. Various processing steps are repeated to produce another SDOI substrate as well as a remaining donor substrate, and the steps may be repeated to produce n−1 SDOI substrates.
摘要:
Methods (and semiconductor substrates produced therefrom) of fabricating (n−1) SDOI substrates using n wafers is described. A donor substrate (e.g., silicon) includes a buffer layer (e.g., SiGe) and a plurality of multi-layer stacks formed thereon having alternating stress (e.g., relaxed SiGe) and strain (e.g., silicon) layers. An insulator is disposed adjacent an outermost strained silicon layer. The outermost strained silicon layer and underlying relaxed SiGe layer is transferred to a handle substrate by conventional or known bonding and separation methods. The handle substrate is processed to remove the relaxed SiGe layer thereby producing an SDOI substrate for further use. The remaining donor substrate is processed to remove one or more layers to expose another strained silicon layer. Various processing steps are repeated to produce another SDOI substrate as well as a remaining donor substrate, and the steps may be repeated to produce n−1 SDOI substrates.
摘要:
Methods (and semiconductor substrates produced therefrom) of fabricating (n−1) SDOI substrates using n wafers is described. A donor substrate (e.g., silicon) includes a buffer layer (e.g., SiGe) and a plurality of multi-layer stacks formed thereon having alternating stress (e.g., relaxed SiGe) and strain (e.g., silicon) layers. An insulator is disposed adjacent an outermost strained silicon layer. The outermost strained silicon layer and underlying relaxed SiGe layer is transferred to a handle substrate by conventional or known bonding and separation methods. The handle substrate is processed to remove the relaxed SiGe layer thereby producing an SDOI substrate for further use. The remaining donor substrate is processed to remove one or more layers to expose another strained silicon layer. Various processing steps are repeated to produce another SDOI substrate as well as a remaining donor substrate, and the steps may be repeated to produce n−1 SDOI substrates.
摘要:
An integrated circuit system that includes: providing a substrate including a first region and a second region; forming a first device over the first region and a resistance device over the second region; forming a first dielectric layer and a second dielectric layer over the substrate; removing a portion of the second dielectric layer; and annealing the integrated circuit system to remove dopant from the resistance device.